References
- Abbas M., Saeed F., Anjum F.M., Afzaal M., Tufail T., Bashir M.S., Ishtiaq A., Hussain S., Suleria H.A.R., 2017. Natural polyphenols: An overview. International Journal of Food Properties, 20(8), 12. doi:10.1080/10942912.2016.1220393
- Adkins Y., Kelley D.S., 2010. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. Journal of nutritional biochemistry, 21(9), 12. doi:10.1016/j.jnutbio.2009.12.004
- Ahmed S.M., Luo L., Namani A., Wang X.J., Tang X., 2017. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta, 1863(2). doi:10.1016/j.bbadis.2016.11.005
- Ambriz-Pérez D.L., Leyva-López N., Gutierrez-Grijalva E.P., Heredia J.B., 2016. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food & Agriculture, 2. doi:10.1080/23311932.2015.1131412
- Andelkovic M., Radovanovic B., Milenkovic-Andelkovic A., Radovanovic V., Zarubica A., Stojkovic N., Nikolic V., 2015 The determination of bioactive ingredients of grape pomace (Vranac variety) for potential use in food and pharmaceutical industries. Advanced Technologies, 4(2), 5. doi:10.5937/savteh1502032A
- Andrews C., McLean M.H. and Durum S.K., 2018. Cytokine Tuning of Intestinal Epithelial Function. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.01270
- Antonić B., Jančíková S., Dordević D., Tremlová B., 2020. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods, 9(11), 20. doi:10.3390/foods9111627
- Antoniolli A., Fontana A.R., Piccoli P., Bottini R., 2015. Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chemistry, 178. doi:10.1016/j.foodchem.2015.01.082.
- Bassani A., Alberici N., Fiorentini C., Giuberti G., Dordoni R., Spigno G., 2020. Hydrothermal Treatment of Grape Skins for Sugars, Antioxidants and Soluble Fibers Production. Chemical engineering transactions, 79, 6. doi:10.3303/CET2079022
- Bekhit A.E.A., Cheng V.J., Harrison R., Ye Z., Bekhit A.A., Ng T.B., Ling Ming K., 2016. Technological Aspects of By-Product Utilization. In M. Bordiga (Ed.), Valorization of Wine Making By-Products: Taylor and Francis Group.
- Bordiga M., Travaglia F., Locatelli M., 2019. Valorisation of grape pomace: An approach that is increasingly reaching its maturity—A review. International Journal of Food Science and Technology, 54(4), 10. doi: https://doi.org/10.1111/ijfs.14118
- Cao S., Shen Z., Wang C., Zhang Q., Hong Q., He Y., Hu C., 2019. Resveratrol improves intestinal barrier function, alleviates mitochondrial dysfunction and induces mitophagy in diquat challenged piglets. Food and function, 10(1). doi: 10.1039/c8fo02091d.
- Chakka A.K., Babu A.S., 2022. Bioactive Compounds of Winery by-products: Extraction Techniques and their Potential Health Benefits. Applied Food Research, 2. doi:10.1016/j.afres.2022.100058
- Chedea V.S., Palade L.M., Marin D.E., Pelmus R.S., Habeanu M., Rotar M.C., Gras M.A., Pistol G.C., Taranu I., 2018. Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols. Nutrients, 10(5), 24. doi: 10.3390/nu10050588
- Chen J., Yu B., Chen D., Huang Z., Mao X., Zheng P., Yu J., Luo J., He J., 2018. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. The Journal of Nutritional Biochemistry, 59. doi:10.1016/j.jnutbio.2018.06.005
- Chen X., Zeng Z., Huang Z., Chen D., He J., Chen H.,Yu B., Yu J., Luo J., Luo Y., Zheng P., 2021. Effects of dietary resveratrol supplementation on immunity, antioxidative capacity and intestinal barrier function in weaning piglets. Animal Biotechnology, 32(2), 7. doi:10.1080/10495398.2019.1683022
- Chidambara M.K.N., Singh R.P., Jayaprakasha G.K., 2002. Antioxidant activities of grape (Vitis vinifera) pomace extracts. Journal of agricultural and food chemistry., 50(21). doi:10.1021/jf0257042
- De Lange C.F., Pluske J., Gong J., Nyachoti C.M., 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134(1-3).
- D'Eusanio V., Malferrari D., Marchetti A., Roncaglia F., Tassi L., 2023. Waste By-Product of Grape Seed Oil Production: Chemical Characterization for Use as a Food and Feed Supplement. Life (Basel). 13(2):326. doi: 10.3390/life13020326.
- Dranca F., Oroian M., 2019. Kinetic Improvement of Bioactive Compounds Extraction from Red Grape (Vitis vinifera Moldova) Pomace by Ultrasonic Treatment. Foods, 8(8), 18. doi:10.3390/foods8080353.
- Elkatry H.O., Ahmed A.R., El-Beltagi H.S., Mohamed H.I., Eshak N.S., 2022. Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods.,11(13):1948. doi: 10.3390/foods11131948
- Fernandes L., Casal S., Cruz R., Pereira J.A., Ramalhosa E., 2013. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Research International, 50, 6. doi:10.1016/j.foodres.2012.09.039
- Fiesel A., Gessner D. K., Most E., Eder K., 2014. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. . BMC Veterinary Research, 10. doi:10.1186/s12917-014-0196-5
- Gessner D.K., Fiesel A., Most E., Dinges J., Wen, G., Ringseis R., & Eder K., 2013. Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Veterinaria Scandinavica, 55(1), 18.
- González-Mariscal L., Betanzos A., Nava P., Jaramillo B.E., 2003. Tight junction proteins. Progress in Biophysics & Molecular Biology, 81(1), 44. doi:10.1016/s0079-6107(02)00037-8.
- Gulcu M., Uslu N., Ozcan M.M., Gokmen F., Ozcan M., Banjanin T., Gezgin S., Dursun N., Gecgel U., Ceylan D.A., Lemiasheuski D., 2019. The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. Jounral of food porcessing and preservation, 43. doi:10.1111/jfpp.13850
- Han M., Song P., Huang C., Rezaei A., Farrar S., Brown M.A., Ma X., 2016. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget, 7(49), 14. doi:10.18632/oncotarget.13450
- Hao R., Li Q., Zhao J., Li H., Wang W., Gao J., 2015. Effects of grape seed procyanidins on growth performance, immune function and antioxidant capacity in weaned piglets. Livestock Science, 178(2015). doi:10.1016/j.livsci.2015.06.004
- Hu C.H., Xiao K., Luan Z.S., Song J., 2013. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. Journal of animal science, 91(3), 8. doi:10.2527/jas.2012-5796.
- Hussain T., Tan B., Yin Y., Blachier F., Tossou M.C., Rahu N., 2016. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? . Oxidative Medicine and Cellular Longevity, 2016, 9. doi:10.1155/2016/7432797
- Hussein S., Abdrabba S., 2015. Physico-chemical Characteristics, Fatty Acid, Composition of Grape Seed Oil and Phenolic Compounds of Whole Seeds, Seeds and Leaves of Red Grape in Libya. International Journal of Applied Science and Mathematics, 2(5), 7.
- Iora S.R.F., Maciel G.M., Zielinski A.A.F., da Silva M.V., de A. Pontes P.V., Haminiuk C.W.I., Granato D., 2014. Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science and Technology, 50(1), 8. doi:10.1111/ijfs.12583
- Kalli E., Lappa I., Bouchagier P. et al., 2018. Novel application and industrial exploitation of winery by-products. Bioresources and Bioprocessing, 5, 21. doi:10.1186/s40643-018-0232-6
- Kapoor B., Kapoor D., Gautam S., Singh R., Bhardwaj S., 2021. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Current Nutrition Reports, 10(3). doi:10.1007/s13668-021-00363-3.
- Kollathova R., Hanusovsky O., Galik B., Biro D., Simko M., Juracek M., Rolinec M., Puntigam R., Slama J.A., Gierus G., 2020. Fatty acid profile analysis of grape by-products from Slovakia and Austria. Acta fytotechnica et zootechnica, 23(2), 7. doi:10.15414/afz.2020.23.02.78-84
- Lallès J.P., Bosi P., Smidt H., Stokes C.R., 2007. Nutritional management of gut health in pigs around weaning. Proceedings of the Nutrition Society, 66(2), 9. doi:10.1017/S0029665107005484
- Lelario F., Scrano L., De Franchi S. et al., 2018. Identification and antimicrobial activity of most representative secondary metabolites from different plant species. Chemical and Biological Technologies in Agriculture, 5(13), 12. doi:10.1186/s40538-018-0125-0
- Lingua M.S., Fabani M.P., Wunderlin D.A., Baroni M.V., 2016. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chemistry, 208. doi:10.1016/j.foodchem.2016.04.009
- Lipiński K., Mazur M., Antoszkiewicz Z., Purwin C., 2017. Polyphenols in Monogastric Nutrition – A Review. Annals of Animal Science, 17(1), 18. doi:10.1515/aoas-2016-0042
- Liu Y., 2015. Fatty acids, inflammation and intestinal health in pigs. Journal of Animal Science and Biotechnology, 6(1). doi:10.1186/s40104-015-0040-1.
- Llobera A., Cañellas J., 2008. Antioxidant activity and dietary fibre of Prensal Blanc white grape (Vitis vinifera) by‐products. . International Journal of Food Science and Technology, 43, 7. doi:10.1111/j.1365-2621.2008.01798.x
- Lu T., Harper A. F., Zhao J., Estienne M.J., Dalloul R.A., 2014. Supplementing antioxidants to pigs fed diets high in oxidants: I. Effects on growth performance, liver function, and oxidative status. Journal of animal science, 92(12), 11. doi:10.2527/jas.2013-7109
- Ma Z.F., Zhang H., 2017. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants (Basel), 6(3). doi:10.3390/antiox6030071
- Mankertz J., Tavalali S., Schmitz H., Mankertz A., Riecken E.O., Fromm M., Schulzke J.D., 2000. Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. Journal of Cell Science, 113, 6. doi:10.1242/jcs.113.11.2085
- Marin D.E., Anghel A. C., Bulgaru C.V., Grosu I., Pistol G.C., Cismileanu A.E., Taranu I., 2022. The Use of Agro-Industrial Waste Rich in Omega-3 PUFA during the Weaning Stress Improves the Gut Health of Weaned Piglets. . Agriculture, 12, 15. doi: 10.3390/agriculture12081142
- Meini M.R., Cabezudo I., Boschetti C.E., Romanini D., 2019. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chemistry, 283, 8. doi:10.1016/j.foodchem.2019.01.037
- Meng Q., Sun S., Luo Z., Shi B., Shan A., Cheng B., 2019. Maternal dietary resveratrol alleviates weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and microbiota. Food and function, 10(9). doi:10.1039/c9fo00637k.
- Modina S.C., Polito U., Rossi R., Corino C., Di Giancamillo A., 2019. Nutritional Regulation of Gut Barrier Integrity in Weaning Piglets. Animals (Basel). 9(12), 15. doi:10.3390/ani9121045
- Negro C., Tommasi L., Miceli A., 2003. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresource Technology, 87(1), 4. doi:10.1016/s0960-8524(02)00202-x
- OIV, 2019. OIV REPORT ON THE WORLD VITIVINICULTURAL SITUATION. Paper presented at the 42nd World Congress of Vine and Wine, Geneva, Switzerland.
- Oliveira M., Duarte E., 2014. Integrated approach to winery waste: waste generation and data consolidation. Frontiers of Environmental Science & Engineering volume, 10. doi:10.1007/s11783-014-0693-6
- Peixoto C.M., Dias M. I., Alves M.J., Calhelha R.C., Barros L., Pinho S.P., Ferreira I.C.F.R., 2018. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chemistry, 253. doi:10.1016/j.foodchem.2018.01.163
- Pi J., Zhang Q., Fu J., Woods C.G., Hou Y., Corkey B.E., Collins S., Andersen M.E., 2010. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicology and applied pharmacology, 244(1), 17. doi:10.1016/j.taap.2009.05.025
- Pié S., Lalles J. P., Blazy F., Laffitte J., Sève B., Oswald I.P., 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. Journal of nutrition, 134(3), 7. doi:10.1093/jn/134.3.641
- Pistol G.C., Bulgaru C. V., Marin D.E., Oancea A.G., Taranu I., 2021. Dietary Grape Seed Meal Bioactive Compounds Alleviate Epithelial Dysfunctions and Attenuates Inflammation in Colon of DSS-Treated Piglets. Foods, 10(3). doi:10.3390/foods10030530
- Pistol G.C., Marin D. E., Rotar M.C., Ropota M., Taranu I., 2020. Bioactive compounds from dietary whole grape seed meal improved colonic inflammation via inhibition of MAPKs and NF-kB signaling in pigs with DSS induced colitis. Journal of Functional Foods, 66. doi:10.1016/j.jff.2019.10370
- Pistol G.C., Palade L. M., Marin D.E., Stancu M., Taranu I., 2019. The effect of grape wastes, wine industry byproducts, on inflammatory and antioxidant biomarkers in post-weaning piglets. Scientific Papers-Animal Science Series: Lucrări Ştiinţifice - Seria Zootehnie, 71, 5.
- Qin W., Xu B., Chen Y., Yang W., Xu Y., Huang J., Duo T., Mao Y., Zhou G., Yan X., Ma L., 2022. Dietary ellagic acid supplementation attenuates intestinal damage and oxidative stress by regulating gut microbiota in weanling piglets. Animal nutrition, 11, 12. doi:10.1016/j.aninu.2022.08.004.
- Rajković E., Schwarz C., Kapsamer S.B., Schedle K., Reisinger N., Emsenhuber C., Ocelova V., Roth N., Frieten D., Dusel G., Gierus M., 2022. Evaluation of a Dietary Grape Extract on Oxidative Status, Intestinal Morphology, Plasma Acute-Phase Proteins and Inflammation Parameters of Weaning Piglets at Various Points of Time. Antioxidants (Basel). 11(8). doi:10.3390/antiox11081428
- Rasouli H., Farzei M. H., Khodarahmi R., 2017. Polyphenols and their benefits: A review. International Journal of Food Properties, 20, 43. doi:10.1080/10942912.2017.1354017
- Salama A.A., 2007 Evaluation of grape (Vitis vinifera L.) seeds as a new source of edible protein and oil for human nutrition. J Agric. Sci. Mansoura Univ., 32 (7): 5391 – 5404.
- Sandoval-Ramírez B.A., Catalán Ú., Pedret A., Valls R.M., Motilva M.J., Rubió L., Solà R., 2021. Exploring the effects of phenolic compounds to reduce intestinal damage and improve the intestinal barrier integrity: A systematic review of in vivo animal studies. Clinical Nutrition, 40(4). doi:10.1016/j.clnu.2020.09.027.
- Sarkhosh-Khorasani S., Sangsefidi Z. S., Hosseinzadeh M., 2021. The effect of grape products containing polyphenols on oxidative stress: a systematic review and meta-analysis of randomized clinical trials. Nutrition Journal, 20(25). doi:10.1186/s12937-021-00686-5
- Sehm J., Lindermayer H., Dummer C., Treutter D., Pfaffl M.W., 2007. The influence of polyphenol rich apple pomace or red-wine pomace diet on the gut morphology in weaning piglets. Journal of Animal Physiology and Animal Nutrition, 91(7-8). doi:10.1111/j.1439-0396.2006.00650.x
- Shahidi F., Ambigaipalan P., 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, 78. doi:10.1016/j.jff.2015.06.018
- Shifflett D.E., Jones S. L., Moeser A.J., Blikslager A.T., 2014. Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum. American journal of physiology. Gastrointestinal and liver physiology, 286(6), 8. doi:10.1152/ajpgi.00478.2003.
- Sirohi R., Tarafdar A., Singh S., Negi T., Gaur V.K., Gnansounou E., Bharathiraja B., 2020. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresource Technology, 134. doi:10.1016/j.biortech.2020.123771
- Spigno G., De Faveri D. M., 2007. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. Journal of Food Engineering, 78(3), 9. doi:10.1016/j.jfoodeng.2005.11.020
- Surh Y.J., Kundu J. K., Na H.K., 2008. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta medica, 74(13), 14. doi:10.1055/s-0028-1088302
- Swallah M.S., Sun H., Affoh R., Fu H., Yu H., 2020. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. International Journal of Food Science, 2020, 8. doi:10.1155/2020/9081686
- Takiishi T., Fenero C.I.M., Câmara N.O.S., 2017. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers., 5(4). doi:10.1080/21688370.2017.1373208
- Tang X., Xiong K., Fang R., Li M., 2022. Weaning stress and intestinal health of piglets: A review. Frontiers in Immunology, 13. doi:10.3389/fimmu.2022.1042778
- Taranu I., Marin D.E., Palade M., Pistol G.C., Chedea V.S., Gras M.A., Rotar C., 2019. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet on performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon, 162. doi:10.1016/j.toxicon.2019.02.020
- Troilo M., Difonzo G., Paradiso V.M., Summo C., Caponio F., 2021. Bioactive Compounds from Vine Shoots, Grape Stalks, and Wine Lees: Their Potential Use in Agro-Food Chains. Foods, 10(2). doi:10.3390/foods10020342
- Tsukahara T., Kishino E., Inoue R., Nakanishi N., Nakayama K., Ito T., Ushida K., 2012. Correlation between villous height and the disaccharidase activity in the small intestine of piglets from nursing to growing. Animal Science Journal, 84(1), 6. doi:10.1111/j.1740-0929.2012.01039.x.
- Wang R., Yu H., Fang H., Jin Y., Zhao Y., Shen J., Zhou C., Li R., Wang J., Fu Y., et al., 2020. Effects of dietary grape pomace on the intestinal microbiota and growth performance of weaned piglets. Archives of Animal Nutrition, 74, 14. doi:10.1080/1745039X.2020.1743607
- Wei X. (2022). Grape seed procyanidins improve intestinal health by modulating gut microbiota and enhancing intestinal antioxidant capacity in weaned piglets. Livestock Science, v. 264, pp. 105066-102022 v.105264. doi:10.1016/j.livsci.2022.105066
- Xiao K., Liu C., Tu Z., Xu Q., Chen S., Zhang Y., Wang X., Zhang J., Hu C.A., Liu Y., 2020. Activation of the NF-κB and MAPK Signaling Pathways Contributes to the Inflammatory Responses, but Not Cell Injury, in IPEC-1 Cells Challenged with Hydrogen Peroxide. Oxidative Medicine and Cellular Longevity, 2020. doi:10.1155/2020/5803639.
- Xiong R.G., Zhou D.D., Wu S.X., Huang S.Y., Saimaiti A., Yang Z.J., Shang A., Zhao C.N., Gan R.Y., Li H.B., 2022. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods, 11(18). doi:10.3390/foods11182863
- Xun W., Fu. Q., Shi L., Cao T., Jiang H., Ma Z., 2021. Resveratrol protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in weaned piglets challenged with diquat. International Immunopharmacology, 99. doi:10.1016/j.intimp.2021.107989
- Yi H., Jiang D., Zhang L., Xiong H., Han F., Wang Y., 2016. Developmental expression of STATs, nuclear factor-κB and inflammatory genes in the jejunum of piglets during weaning. International Immunopharmacology, 36. doi:10.1016/j.intimp.2016.04.032
- Yin J., Wu M. M., Xiao H., Ren W.K., Duan J.L., Yang G., Li T.J., Yin Y.L., 2014. Development of an antioxidant system after early weaning in piglets. Journal of animal science, 92(2). doi:10.2527/jas.2013-6986.
- Yu J., Ahmedna M., 2013. Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science and Technology, 48, 17. doi:10.1111/j.1365-2621.2012.03197.x
- Zhang H., Chen Y., Chen Y., Ji S., Jia P., Li Y., Wang T., 2020. Comparison of the protective effects of resveratrol and pterostilbene against intestinal damage and redox imbalance in weanling piglets. Journal of Animal Science and Biotechnology, 11(52), 16. doi:10.1186/s40104-020-00460-3
- ZhiJing Y., Harrison R., Cheng V., Bekhit A.E.A., 2016. Wine making by-products. In M. Bordiga (Ed.), Valorization of wine making by-products (pp. 43). Taylor & Francis: CRC Press.
- Zolotarevsky Y., Hecht G., Koutsouris A., Gonzalez D.E., Quan C., Tom J., Mrsny R.J., Turner J.R., 2002. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology, 123(1), 163. doi:10.1053/gast.2002.34235.