Have a personal or library account? Click to login
Study of the Preplasma Generation for Flat and Nanostructured Targets in Case of Oblique Radiation Incidence Cover

Study of the Preplasma Generation for Flat and Nanostructured Targets in Case of Oblique Radiation Incidence

Open Access
|Feb 2024

References

  1. X.-L. Zhu, M. Chen, S.-M. Weng, T.-P. Yu, W.-M. Wang, F. He, Z.-M. Sheng, P. McKenna, D. A. Jaroszynski, and J. Zhang, Extremely brilliant gev γ-rays from a two-stage laser-plasma accelerator, Science advances 6, eaaz7240 (2020).
  2. A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Reviews of Modern Physics 85, 751–793 (2013).
  3. H. Takabe and Y. Kuramitsu, Recent progress of laboratory astrophysics with intense lasers, High Power Laser Science and Engineering 9, e49 (2021).
  4. M. Kirchen, S. Jalas, P. Messner, P. Winkler, T. Eichner, L. Hübner, T. Hülsenbusch, L. Jeppe, T. Parikh, M. Schnepp, A. R. Maier, Optimal beam loading in a laser-plasma accelerator, Physical review letters 126, 174801 (2021).
  5. L. Rovige, J. Huijts, I. Andriyash, A. Vernier, M. Ouillé, Z. Cheng, T. Asai, Y. Fukuda, V. Tomkus, V. Girdauskas, R. Lopez-Martens, J. Faure, Optimization and stabilization of a kilohertz laser-plasma accelerator, Physics of Plasmas 28 (2021).
  6. L. Labate, D. Palla, D. Panetta, F. Avella, F. Baffigi, F. Brandi, F. Di Martino, L. Fulgentini, A. Giulietti, P. Köster, D. Terzani, P. Tomassini, C. Traino, L. A. Gizz, Toward an effective use of laser-driven very high energy electrons for radiotherapy: Feasibility assessment of multi-field and intensity modulation irradiation schemes, Scientific reports 10, 17307 (2020).
  7. B. Mao, A. Siddaiah, Y. Liao, and P. L. Menezes, Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review, Journal of Manufacturing Processes 53, 153–173 (2020).
  8. M. R. Edwards and P. Michel, Plasma transmission gratings for compression of high-intensity laser pulses, Physical Review Applied 18, 024026 (2022).
  9. J. M. Mikhailova, A. Buck, A. Borot, K. Schmid, C. Sears, G. D. Tsakiris, F. Krausz, and L. Veisz, Ultra-high-contrast few-cycle pulses for multipetawatt-class laser technology, Optics letters 36, 3145–3147 (2011).
  10. J. Ong, A. Zubarev, A. Berceanu, M. Cuzminschi, and O. Tesileanu, Nanowire implosion under laser amplified spontaneous emission pedestal irradiation, Scientific Reports 13, 20699 (2023).
  11. C. Iorga, Dynamical aspects of photoionization from the 1s22snp 1Po1 levels belonging to the c iii ion near the first ionization threshold, Phys. Rev. A 107, 033115 (2023).
  12. R. Nuter, L. Gremillet, P. Combis, M. Drouin, E. Lefebvre, A. Flacco, and V. Malka, Influence of a preplasma on electron heating and proton acceleration in ultraintense laser-foil interaction, Journal of applied physics 104 (2008).
  13. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics, Physics of plasmas 9, 949–957 (2002).
  14. J. Nikl, M. Jirka, M. Matys, M. Kucharík, and O. Klimo, Contrast enhancement of ultra-intense laser pulses by relativistic plasma shutter, in High Power Lasers and Applications, Vol. 11777 (SPIE, 2021) pp. 107–112.
  15. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, Generation of high-contrast, 30 fs, 1.5 pw laser pulses from chirped-pulse amplification ti: sapphire laser, Optics express 20, 10807–10815 (2012).
  16. N. Minkovski, S. M. Saltiel, G. I. Petrov, O. Albert, and J. Etchepare, Polarization rotation induced by cascaded third-order processes, Opt. Lett. 27, 2025–2027 (2002).
  17. G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses, Phys. Rev. E 69, 026402 (2004).
  18. J. Park, R. Tommasini, R. Shepherd, R. A. London, C. Bargsten, R. Hollinger, M. G. Capeluto, V. N. Shlyaptsev, M. P. Hill, V. Kaymak, C. Baumann, A. Pukhov, D. Cloyne, R. Costa, J. Hunter, S. Maricle, J. Moody, and J. J. Rocca, Absolute laser energy absorption measurement of relativistic 0.7 ps laser pulses in nanowire arrays, Physics of Plasmas 28, 023302 (2021)
  19. T. Hosokai, K. Kinoshita, A. Zhidkov, K. Nakamura, T. Watanabe, T. Ueda, H. Kotaki, M. Kando, K. Nakajima, and M. Uesaka, Effect of a laser prepulse on a narrow-cone ejection of mev electrons from a gas jet irradiated by an ultrashort laser pulse, Physical review E 67, 036407 (2003).
  20. D. A. Serebryakov and E. N. Nerush, Effect of a prepulse on the efficiency of gamma-ray generation by a relativistic laser pulse obliquely incident on a planar target, Quantum Electronics 47, 206 (2017).
  21. B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, The Astrophysical Journal Supplement Series 131, 273 (2000).
  22. C. Iorga and V. Stancalie, A quantitative study of the forbidden and intercombination transitions arising from the li-like al autoionizing levels, Canadian Journal of Physics 93, 1413–1419 (2015).
  23. C. Iorga, V. ALIE, and V. Pais, A study of the laser-produced aluminum plasma by means of computer simulation, Romanian Reports in Physics 68, 294–304 (2016).
DOI: https://doi.org/10.2478/awutp-2025-0001 | Journal eISSN: 2784-1057 | Journal ISSN: 1224-9718
Language: English
Page range: 1 - 12
Submitted on: Dec 6, 2024
Accepted on: Jan 27, 2025
Published on: Feb 11, 2024
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 A. Zubarev, J. F. Ong, A. C. Berceanu, M. Cuzminschi, O. Tesileanu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.