Have a personal or library account? Click to login
I-MASnBr3 /CZTGS Heterojunction Solar Cell Layer Optimization Investigated Using Scaps-1D Software Exhibited Excellent Performance at 50 % Cover

I-MASnBr3 /CZTGS Heterojunction Solar Cell Layer Optimization Investigated Using Scaps-1D Software Exhibited Excellent Performance at 50 %

Open Access
|Dec 2024

References

  1. R. M France, J. F. Geisz, T. Song, W. Olavarria, M. Young, A. Kibbler, A. Steiner. “Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices”. Joule, 6(5) (2022) 1121–1135. https://doi.org/10.1016/j.joule.2022.04.024
  2. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl Phys Lett. (2007) “40% efficient metamorphic GaInPGaInAsGe multijunction solar cells”. Applied Physics Letters 90(18) (2007) 183516. https://doi.org/10.1063/1.2734507
  3. S. Bhattarai1, M.K.A. Mohammed, J.Madan, R.Pandey, M.Z.Ansari, A.N.Z. Rashed, M.Amamiand, M.K. Hossain, Performance Improvement of Perovskite Solar Cell Design with Double Active Layer to Achieve an Efficiency of over 31%. Sustainability 15 (2023) 13955. https://doi.org/10.3390/su151813955
  4. S. Bhattarai, R. Pandey, J. Madan, S. Tayeng, P. K. Kalita, M. Z. Ansari, L. Ben Farhat, M. Amamif, M.K. Hossain, “Comparative study of distinct halide composites for highly efficient perovskite solar cells using a SCAPS-1D simulator“, RSC Adv. 13 (2023) 26851. https://doi.org/10.1039/d3ra04134d
  5. G. Jie, C.R. Grice, Y. Yanfa, “Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells & quot” Mater. Chem. A 5 (2017) 2920-2928. http://dx.doi.org/10.1039/C6TA08426E
  6. J. Ge, Y. Yan, “Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells”. Journal of Materials Chemistry C 5(26) (2017) 6406–6419. https://doi.org/10.1039/c7tc01678f
  7. R. Mannu, S.Padhy, U. P.Singh, “Output parametric optimization of CZTGS bilayer absorber layer: A numerical study“. Materials Today: Proceedings 67(V) (2022) 768-776, https://doi.org/10.1016/j.matpr.2022.07.302
  8. R. Caballero, I. Victorov, R. Serna, J.M. Cano-Torres, C. Maffiotte, E. Garcia-Llamas, J.M. Merino, M. Valakh, I. Bodnar, M. Leo, “Band-gap engineering of Cu2ZnSn1xGexS4 single crystals and influence of the surface properties“. Acta Materialia 79 (2015), 181-187, https://doi.org/10.1016/j.solmat.2015.03.004
  9. M. Singh, T. R. Rana, J.H. Kim, “Fabrication of band gap tuned Cu2Zn(Sn1-xGex)(S,Se)4 absorber thin film using nanocrystal-based ink in non-toxic solvent”. J. of Alloys and Compounds 675 (2016) 370. https://doi.org/10.1016/j.jallcom.2016.03.138
  10. G. M. Ford, Q.Guo, R.Agrawal, H.W Hillhouse, “Earth abundant element Cu2Zn(Sn1-xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% Efficient device Fabrication”. Chem Mater. 23(10) (2011) 2626. https://doi.org/10.1021/cm2002836
  11. G. Chen, W. Wang, S. Chen, Z. Whang, Z. Huang, B. Zhang, X. Kong, “Bandgap engineering of Cu2ZnSn1-xGexS(e)4 by adjusting Sn-Ge ratios for almost full solar spectrum absorption”. J Alloys Compounds 718 (2017) 236–245. https://doi.org/10.1016/j.jallcom.2017.05.150
  12. R. Scaffidi, G. Birant, G. Brammertz, J. de Wild, D. Flandre, B. Vermang, “Ge-alloyed kesterite thin-film solar cells: previous investigations and current status – a comprehensive review”. J. Materials chemistry A 11(25) (2023) 13174–13194. https://doi.org/10.1039/D3TA01218B.
  13. C. Bernal, K. Yang, “First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3”. J. Phys. Chem. C 118(42) (2014) 24383–24388. https://doi.org/10.1021/jp509358f
  14. S.Bhattarai, P.K. Kalita, I. Hossain, A.S. Alsubaie, K.H. Mahmoud, M.Z. Ansari, P. Janicek, “P.Designing an Efficient Lead-Free Perovskite Solar Cell through a Computational” Method. Crystals 13 (2023) 1175. https://doi.org/10.3390/cryst13081175
  15. S. Bhattarai, R. Pandey, J. Madan, D. Muchahary, D. Gogoi, “A novel graded approach for improving the efficiency of Lead-Free perovskite solar cells”. Solar Energy 244 (2022) 255–263.https://doi.org/10.1016/J.SOLENER.2022.08.030
  16. W. Fu, A.G. Ricciardulli, Q.A. Akkerman, R.A. John, M.M. Tavakoli, S. Essig, M.V. Kovalenko, M. Saliba, “Stability of perovskite materials and devices”. Materials Today 58 (2022) 275–296., https://doi.org/10.1016/J.MATTOD.2022.06.020
  17. S. Foo, M. Thambidurai, K.P. Senthil, R. Yuvakkumar, Y. Huang, C. Dang. “Recent review on electron transport layers in perovskite solar cells”. Int. J. Energy Res. 46(15) (2022) 21441-21451. https://doi.org/10.1002/er.7958
  18. K. Mahmood, S. Sarwar, M.T Mehran, Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 7(28) (2017) 17044–17062. https://doi.org/10.1039/C7RA00002B
  19. B. Tan and Y. Wu, “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites”, J. Phys. Chem. B 2006, 110, 32, 15932–15938 https://doi.org/10.1021/jp063972n
  20. B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, and D.Y. Kim, “Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanorod Photoelectrodes”, J. Phys. Chem. C 113(51) (2009) 21453–21457. https://doi.org/10.1021/jp907855x
  21. Z. Yu, I.R. Perera, T. Daeneke, S. Makuta, Y. Tachibana, J.J. Jasieniak, A. Mishra, P. Bäuerle, L. Spiccia, U. Bach, “Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells“, NPG Asia Materials 8 (2016) e305 https://doi.org/10.1038/am.2016.89
  22. M. Ghaleb, A. Arrar, Z.Touaa, “Optimization and Performance Analysis of a TiO2/i-CH3NH3SnBr3/CsPbI3/Al (BSF) Heterojunction Perovskite Solar Cell for Enhanced Efficiency”, ACS Omega 8(40) (2023) 37011-37022. https://doi.org/10.1021/acsomega.3c03891.
  23. M. Burgelman, P. Nollet and S. Degrave, “Modelling polycrystalline semiconductor solar Cells”, Thin Solid Films 361-362 (2000) 527-532. https://doi.org/10.1016/S0040-6090(99)00825-1.
  24. B. Z. Bhari, K.S. Rahman, P. Chelvanathan, M.A. Ibrahim, “Numerical Simulation of Ultrathin CdTe Solar Cell by SCAPS-1D”. IOP Conf. Ser. Mater. Sci. Eng. 1278(1) (2023), 012002. https://doi.org/10.1088/1757-899X/1278/1/012002.
  25. N.J. Valeti, K. Prakash, M. K. Singha, “Numerical simulation and optimization of lead free CH3NH3SnI3 perovskite solar cell with CuSbS2 as HTL using SCAPS 1D”. Results in Optics 12 (2023) 100440. https://doi.org/10.1016/j.rio.2023.100440
  26. M.K. Hossain, M.H.K.Rubel, G.F.I. Toki, I. Alam, Md. F. Rahman, H. Bencherif, “Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells”. ArXiv :2211.02968. https://doi.org/10.48550/arXiv.2211.02968
  27. Y. H. Khattak, F. Baig, H. Toura, S. Beg, & B. M. Soucase,” Efficiency enhancement of Cu2BaSnS4 experimental thin-film solar cell by device modeling”. J.Mat. Scien. 54(24) (2019) 14787–14796. https://doi.org/10.1007/S10853-019-03942-6/METRICS
  28. A. D. Adewoyin, M. A. Olopade, O. O. Oyebola, and M. A. Chendo, “Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D”. Optik, 176 (2019) 132–142. https://doi.org/10.1016/J.IJLEO.2018.09.033
  29. A. A. Abdelkadir, M. Sahal, E. Oublal, N. Kumar, A. Benami, “Performance enhancement investigations of the novel CZTGS thin-film solar cells”. Optical Materials, 133 (2022) 112969. https://doi.org/10.1016/j.optmat.2022.112969
  30. Md.I. Samiul, K. Sobayel, A. Al-Kahtani, M.A. Islam, G. Muhammad, N. Amin, Md. Shahiduzzaman, M.Akhtaruzzaman,, “Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D”. Nanomaterials 11 (2021) 1218. https://doi.org/10.3390/nano11051218
  31. L.Lin, L.Jiang, P.Li, H.Xiong, Z. Kang,, B. Fan, Y.Qiu, “Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells”. J Solar Energy, 198 (2020) 454-460, https://doi.org/10.1016/J.SOLENER.2020.01.081
  32. M. K.Hossain, M.H.K. Rubel, G.F.I. Toki, I. Alam, M.F. Rahman, H. Bencherif, “Effect of Various Electron and Hole Transport Layers on the Performance of CsPbI3-Based Perovskite Solar Cells”: ACS Omega 7(47) (2022) 43210–43230. https://doi.org/10.1021/acsomega.2c05912.
  33. H.T. Ganem, A.N. Saleh, “Enhancement of the Efficiency of the CZTS/Cds/Zno/ITO Solar Cell By Back Reflection and Buffer Layers Using SCAPS -1D”. Iraqi Journal of Science, 62(4) (2021) 1144-1157. https://doi.org/10.24996/IJS.2021.62.4.11
  34. M.K.Hossain, G.F.I. Toki, I. Alam, R. Pandey, D.P. Samajdar, M.F. Rahman, M.R. Islam, M.H.K. Rubel, H. Bencherif, J. Madan, M.K.A. Mohammed, ‘Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency”, New J. Chem., 47 (2023) 4801-4817. https://doi.org/10.1039/D2NJ06206B
  35. A. Abdelkadir, M. Sahal, Theoretical development of the CZTS thin-film solar cell by SCAPS-1D software based on experimental work. Materials Science and Engineering: B 296 (2023) 116710. https://doi.org/10.1016/J.MSEB.2023.116710
  36. U. Saha, A. Biswas, M.K. Alam, “Efficiency enhancement of CZTSe solar cell using CdS(n)/(AgxCu1x)2ZnSnSe4 (p) /Cu2ZnSnSe4 (p+) structure”. Solar Energy 221 (2021) 314-322. https://doi.org/10.1016/J.SOLENER.2021.04.043
  37. S. Dubey, J.N. Sarvaiya, B. Seshadri,” Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review”. Energy Procedia, 33 (2013) 311-321. https://doi.org/10.1016/J.EGYPRO.2013.05.072
  38. Mamta, K.K. Maurya, V.N. Singh,” Enhancing the Performance of an Sb 2 Se 3 -Based Solar Cell by Dual Buffer Layer”, 13, Layer. Sustainability 13 (2021) 12320. https://doi.org/10.3390/su132112320
  39. M. Lameirinhas, R.A., P. Correia V. Bernardo, C., N. Torres, J.P. et al, al. “Modelling the effect of defects and cracks in solar cells’. Scientific Reports 13 (2023) 12490. https://doi.org/10.1038/s41598-023-39769-0.
  40. F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, “Defects engineering for high-performance perovskite solar cells”. npj Flexible Electronics 2 (2018) 22. https://doi.org/10.1038/s41528-018-0035-z
  41. W. Zhao, W. Zhou, X. Miao, 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2012) 502-505. https://doi.org/10.1109/NEMS.2012.6196826.
  42. P. Ci, X. Tian, J. Kang, A.Salazar, K. Eriguchi, S.Warkander, K. Tang, J. Liu, Y. Chen, S. Tongay, W. Walukiewicz, J. Miao, O. Dubon, J. Wu, “Chemical trends of deep levels in van der Waals semiconductors”. Nat. Commun. 11 (2020) 5373. https://doi.org/10.1038/s41467-020-19247-1
  43. W. Walukiewicz, “Amphoteric native defects in semiconductors”. The Journal of Physical Chemistry Letters, 9(14) (2018) 3878-3885. https://doi.org/10.1063/1.101174
  44. K. Cao, Y. Cheng, W. Zuo, B. Cai, Y. Wu, J. Zhu, Y. Zhu, H. Ning, Y. Shen, W. Shen, L. Liu, S. Chen, “Ionic compensation for defect reduction and enhanced performance of tin-based perovskite solar cells”. J power sources 558 (2023) 232595. https://doi.org/10.1016/J.JPOWSOUR.2022.232595
  45. W.Walukiewicz, I. Rey-Stolle, G. Han, M. Jaquez, D. Broberg, W. Xie, M. Sherburne, N. Mathews, M. Asta, “Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics”. J. Phys Chem Lett. 9 (2018) 3878-3885. https://doi.org/10.1021/acs.jpclett.8b01446
  46. D. Ju, Y. Dang, Z. Zhu, H. Liu, C.C. Chueh, X. Li, L.Wang, X. Hu, A.K.Y. Jen, X. Tao, “Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1-xBr3 Single Crystals”.Chem Mater. 30(5) (2018) 1556–1565. https://doi.org/10.1021/acs.chemmater.7b04565
  47. M.C. Naylor, D. Tiwari, A. Sheppard, J. Laverock., S, Campbell, B. Ford, X. Xu, M.D.K. Jones, Y. Qu, P. Maiello, V. Barrioz, N.S. Beattie, N.A. Fox, D.J. Fermin, G. Zoppi, “Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.” Faraday Discussions 239 (2022) 70-84. https://doi.org/10.1039/d2fd00069e
  48. P. Punathil, E. Artegiani, S. Zanetti, L. Lozzi, V. Kumar, A. Romeo, “A simple method for Ge incorporation to enhance performance of low temperature and non- vacuum based CZTSSe solar cells”, Sol Energy 236 (2022) 599-607. https://doi.org/10.1016/j.solener.2022.03.027
  49. C. Gao, Y. Sun, W. Yu, “Influence of Ge Incorporation from GeSe 2 Vapor on the Properties of Cu 2 ZnSn(S,Se) 4 Material and Solar Cells”, Coatings 8(9) (2018) 304. https://doi.org/10.3390/coatings8090304
  50. L.K. Ono, S. Liu (Frank), Y. Qi, “Reducing Detrimental Defects for High-Performance Metal Halide Perovskite Solar Cells”. Angewandte Chemie International Edition 59(17) (2019) 6676-6698, https://doi.org/10.1002/anie.201905521.
  51. M. He, C. Yan, J. Li, M.P. Suryawanshi, J. Kim, M.A. Green, X. Hao, “Kesterite Solar Cells: Insights into Current Strategies and Challenges”, Adv. Sci. 8 (2021) 2004313. https://doi.org/10.1002%2Fadvs.202004313
  52. J. Kumar, P. Srivastava, M. Bag,. “Advanced Strategies to Tailor the Nucleation and Crystal Growth in Hybrid Halide Perovskite Thin Films”. Solid Stat Chemis 10 (2022) 842924. https://doi.org/10.3389/fchem.2022.842924
  53. M.A. Islam, M.N.B. Alamgir, S.I. Chowdhury, S.M.B. Billah, “Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency”. Journal of Ovonic Research, 18(3) (2022) 395–409. https://doi.org/10.15251/JOR.2022.183.395.
  54. K. Fatema, M.S. Arefin, “Enhancing the efficiency of Pb-based and Sn-based perovskite solar cell by applying different ETL and HTL using SCAPS-ID. Optical Materials 125 (2022) 112036. https://doi.org/10.1016/J.OPTMAT.2022.112036.
  55. S. Essig; C. Allebé, T. Remo; J.F. Geisz; M.A. Steiner; K. Horowitz; L. Barraud; J.S. Ward; M. Schnabel; A. Descoeudres; et al. “Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions”. Nat.Energy 2 (2017) 17144. https://doi.org/10.1038/nenergy.2017.144.
  56. M.M. Salah, A. Zekry; A. Shaker; M. Abouelatta; M. Mousa; A. Saeed, “Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell”. Energies 15 (2022) 6326. https://doi.org/10.3390/en15176326.
  57. A.D.K. Kenfack, N.M. Thantsha, M. Msimanga, “Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D”. Solar 3(3) (2023) 458-472. https://doi.org/10.3390/SOLAR3030025.
  58. B. Saha, B.K. Mondal, S.K. Mostaque, M. Hossain, J. Hossain, “Numerical modeling of CuSbSe2-based dual-heterojunction thin film solar cell with CGS back surface layer”. AIP Advances 13 (2023) 025255. https://doi.org/10.1063/5.0133889
  59. K.M. Katubi, N.S. Shiong, M.Z. Pakhuruddin, M.A. Alkhalayfeh, S.A. Abubaker, M.R. Al-Soeidat, “Over 35% efficiency of three absorber layers of perovskite solar cells using SCAPS 1-D”. Optik 297 (2024) 171579. https://doi.org/10.1016/J.IJLEO.2023.171579.
  60. M.H. Azar; S. Aynehband; H. Abdollahi; H. Alimohammadi; N. Rajabi; S. Angizi; V. Kamraninejad; R. Teimouri; R. Mohammadpour; A. Simchi, “SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active Layer and Hole Transport Materials”. Photonics 10 (2023) 271. https://doi.org/10.3390/photonics10030271
  61. M.M. Salah, A. Zekry, A. Shaker, M. Abouelatta, M. Mousa, A. Saeed, “Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell”. Energies 15(17) (2022) 6326. https://doi.org/10.3390/EN15176326
  62. F. Baig, Y.H. Khattak, S. Ullah, B.M. Soucase, S. Beg, H. Ullah, Numerical analysis a guide to improve the efficiency of experimentally designed solar cell. Applied Physics A: Materials Science and Processing, 124(7) (2018), 1–8. https://doi.org/10.1007/S00339-018-1877-X
  63. A. Houimi, S.Y. Gezgin, B. Mercimek, H.Ş. Kılıç, “Numerical analysis of CZTS/n-Si solar cells using SCAPS-1D. A comparative study between experimental and calculated outputs.” Optical Materials 121 (2021) 111544. https://doi.org/10.1016/J.OPTMAT.2021.111544
DOI: https://doi.org/10.2478/awutp-2024-0012 | Journal eISSN: 2784-1057 | Journal ISSN: 1224-9718
Language: English
Page range: 191 - 214
Submitted on: Mar 5, 2024
|
Accepted on: Jun 4, 2024
|
Published on: Dec 12, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 M. Ghaleb, A. Arrar, A. Hadji Chikh, H. Bendjilali, O. Zerrouki, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.