References
- R. M France, J. F. Geisz, T. Song, W. Olavarria, M. Young, A. Kibbler, A. Steiner. “Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices”. Joule, 6(5) (2022) 1121–1135. https://doi.org/10.1016/j.joule.2022.04.024
- R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl Phys Lett. (2007) “40% efficient metamorphic GaInPGaInAsGe multijunction solar cells”. Applied Physics Letters 90(18) (2007) 183516. https://doi.org/10.1063/1.2734507
- S. Bhattarai1, M.K.A. Mohammed, J.Madan, R.Pandey, M.Z.Ansari, A.N.Z. Rashed, M.Amamiand, M.K. Hossain, Performance Improvement of Perovskite Solar Cell Design with Double Active Layer to Achieve an Efficiency of over 31%. Sustainability 15 (2023) 13955. https://doi.org/10.3390/su151813955
- S. Bhattarai, R. Pandey, J. Madan, S. Tayeng, P. K. Kalita, M. Z. Ansari, L. Ben Farhat, M. Amamif, M.K. Hossain, “Comparative study of distinct halide composites for highly efficient perovskite solar cells using a SCAPS-1D simulator“, RSC Adv. 13 (2023) 26851. https://doi.org/10.1039/d3ra04134d
- G. Jie, C.R. Grice, Y. Yanfa, “Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells & quot” Mater. Chem. A 5 (2017) 2920-2928. http://dx.doi.org/10.1039/C6TA08426E
- J. Ge, Y. Yan, “Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells”. Journal of Materials Chemistry C 5(26) (2017) 6406–6419. https://doi.org/10.1039/c7tc01678f
- R. Mannu, S.Padhy, U. P.Singh, “Output parametric optimization of CZTGS bilayer absorber layer: A numerical study“. Materials Today: Proceedings 67(V) (2022) 768-776, https://doi.org/10.1016/j.matpr.2022.07.302
- R. Caballero, I. Victorov, R. Serna, J.M. Cano-Torres, C. Maffiotte, E. Garcia-Llamas, J.M. Merino, M. Valakh, I. Bodnar, M. Leo, “Band-gap engineering of Cu2ZnSn1xGexS4 single crystals and influence of the surface properties“. Acta Materialia 79 (2015), 181-187, https://doi.org/10.1016/j.solmat.2015.03.004
- M. Singh, T. R. Rana, J.H. Kim, “Fabrication of band gap tuned Cu2Zn(Sn1-xGex)(S,Se)4 absorber thin film using nanocrystal-based ink in non-toxic solvent”. J. of Alloys and Compounds 675 (2016) 370. https://doi.org/10.1016/j.jallcom.2016.03.138
- G. M. Ford, Q.Guo, R.Agrawal, H.W Hillhouse, “Earth abundant element Cu2Zn(Sn1-xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% Efficient device Fabrication”. Chem Mater. 23(10) (2011) 2626. https://doi.org/10.1021/cm2002836
- G. Chen, W. Wang, S. Chen, Z. Whang, Z. Huang, B. Zhang, X. Kong, “Bandgap engineering of Cu2ZnSn1-xGexS(e)4 by adjusting Sn-Ge ratios for almost full solar spectrum absorption”. J Alloys Compounds 718 (2017) 236–245. https://doi.org/10.1016/j.jallcom.2017.05.150
- R. Scaffidi, G. Birant, G. Brammertz, J. de Wild, D. Flandre, B. Vermang, “Ge-alloyed kesterite thin-film solar cells: previous investigations and current status – a comprehensive review”. J. Materials chemistry A 11(25) (2023) 13174–13194. https://doi.org/10.1039/D3TA01218B.
- C. Bernal, K. Yang, “First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3”. J. Phys. Chem. C 118(42) (2014) 24383–24388. https://doi.org/10.1021/jp509358f
- S.Bhattarai, P.K. Kalita, I. Hossain, A.S. Alsubaie, K.H. Mahmoud, M.Z. Ansari, P. Janicek, “P.Designing an Efficient Lead-Free Perovskite Solar Cell through a Computational” Method. Crystals 13 (2023) 1175. https://doi.org/10.3390/cryst13081175
- S. Bhattarai, R. Pandey, J. Madan, D. Muchahary, D. Gogoi, “A novel graded approach for improving the efficiency of Lead-Free perovskite solar cells”. Solar Energy 244 (2022) 255–263.https://doi.org/10.1016/J.SOLENER.2022.08.030
- W. Fu, A.G. Ricciardulli, Q.A. Akkerman, R.A. John, M.M. Tavakoli, S. Essig, M.V. Kovalenko, M. Saliba, “Stability of perovskite materials and devices”. Materials Today 58 (2022) 275–296., https://doi.org/10.1016/J.MATTOD.2022.06.020
- S. Foo, M. Thambidurai, K.P. Senthil, R. Yuvakkumar, Y. Huang, C. Dang. “Recent review on electron transport layers in perovskite solar cells”. Int. J. Energy Res. 46(15) (2022) 21441-21451. https://doi.org/10.1002/er.7958
- K. Mahmood, S. Sarwar, M.T Mehran, Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 7(28) (2017) 17044–17062. https://doi.org/10.1039/C7RA00002B
- B. Tan and Y. Wu, “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites”, J. Phys. Chem. B 2006, 110, 32, 15932–15938 https://doi.org/10.1021/jp063972n
- B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, and D.Y. Kim, “Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanorod Photoelectrodes”, J. Phys. Chem. C 113(51) (2009) 21453–21457. https://doi.org/10.1021/jp907855x
- Z. Yu, I.R. Perera, T. Daeneke, S. Makuta, Y. Tachibana, J.J. Jasieniak, A. Mishra, P. Bäuerle, L. Spiccia, U. Bach, “Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells“, NPG Asia Materials 8 (2016) e305 https://doi.org/10.1038/am.2016.89
- M. Ghaleb, A. Arrar, Z.Touaa, “Optimization and Performance Analysis of a TiO2/i-CH3NH3SnBr3/CsPbI3/Al (BSF) Heterojunction Perovskite Solar Cell for Enhanced Efficiency”, ACS Omega 8(40) (2023) 37011-37022. https://doi.org/10.1021/acsomega.3c03891.
- M. Burgelman, P. Nollet and S. Degrave, “Modelling polycrystalline semiconductor solar Cells”, Thin Solid Films 361-362 (2000) 527-532. https://doi.org/10.1016/S0040-6090(99)00825-1.
- B. Z. Bhari, K.S. Rahman, P. Chelvanathan, M.A. Ibrahim, “Numerical Simulation of Ultrathin CdTe Solar Cell by SCAPS-1D”. IOP Conf. Ser. Mater. Sci. Eng. 1278(1) (2023), 012002. https://doi.org/10.1088/1757-899X/1278/1/012002.
- N.J. Valeti, K. Prakash, M. K. Singha, “Numerical simulation and optimization of lead free CH3NH3SnI3 perovskite solar cell with CuSbS2 as HTL using SCAPS 1D”. Results in Optics 12 (2023) 100440. https://doi.org/10.1016/j.rio.2023.100440
- M.K. Hossain, M.H.K.Rubel, G.F.I. Toki, I. Alam, Md. F. Rahman, H. Bencherif, “Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells”. ArXiv :2211.02968. https://doi.org/10.48550/arXiv.2211.02968
- Y. H. Khattak, F. Baig, H. Toura, S. Beg, & B. M. Soucase,” Efficiency enhancement of Cu2BaSnS4 experimental thin-film solar cell by device modeling”. J.Mat. Scien. 54(24) (2019) 14787–14796. https://doi.org/10.1007/S10853-019-03942-6/METRICS
- A. D. Adewoyin, M. A. Olopade, O. O. Oyebola, and M. A. Chendo, “Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D”. Optik, 176 (2019) 132–142. https://doi.org/10.1016/J.IJLEO.2018.09.033
- A. A. Abdelkadir, M. Sahal, E. Oublal, N. Kumar, A. Benami, “Performance enhancement investigations of the novel CZTGS thin-film solar cells”. Optical Materials, 133 (2022) 112969. https://doi.org/10.1016/j.optmat.2022.112969
- Md.I. Samiul, K. Sobayel, A. Al-Kahtani, M.A. Islam, G. Muhammad, N. Amin, Md. Shahiduzzaman, M.Akhtaruzzaman,, “Defect Study and Modelling of SnX3-Based Perovskite Solar Cells with SCAPS-1D”. Nanomaterials 11 (2021) 1218. https://doi.org/10.3390/nano11051218
- L.Lin, L.Jiang, P.Li, H.Xiong, Z. Kang,, B. Fan, Y.Qiu, “Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells”. J Solar Energy, 198 (2020) 454-460, https://doi.org/10.1016/J.SOLENER.2020.01.081
- M. K.Hossain, M.H.K. Rubel, G.F.I. Toki, I. Alam, M.F. Rahman, H. Bencherif, “Effect of Various Electron and Hole Transport Layers on the Performance of CsPbI3-Based Perovskite Solar Cells”: ACS Omega 7(47) (2022) 43210–43230. https://doi.org/10.1021/acsomega.2c05912.
- H.T. Ganem, A.N. Saleh, “Enhancement of the Efficiency of the CZTS/Cds/Zno/ITO Solar Cell By Back Reflection and Buffer Layers Using SCAPS -1D”. Iraqi Journal of Science, 62(4) (2021) 1144-1157. https://doi.org/10.24996/IJS.2021.62.4.11
- M.K.Hossain, G.F.I. Toki, I. Alam, R. Pandey, D.P. Samajdar, M.F. Rahman, M.R. Islam, M.H.K. Rubel, H. Bencherif, J. Madan, M.K.A. Mohammed, ‘Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency”, New J. Chem., 47 (2023) 4801-4817. https://doi.org/10.1039/D2NJ06206B
- A. Abdelkadir, M. Sahal, Theoretical development of the CZTS thin-film solar cell by SCAPS-1D software based on experimental work. Materials Science and Engineering: B 296 (2023) 116710. https://doi.org/10.1016/J.MSEB.2023.116710
- U. Saha, A. Biswas, M.K. Alam, “Efficiency enhancement of CZTSe solar cell using CdS(n)/(AgxCu1–x)2ZnSnSe4 (p) /Cu2ZnSnSe4 (p+) structure”. Solar Energy 221 (2021) 314-322. https://doi.org/10.1016/J.SOLENER.2021.04.043
- S. Dubey, J.N. Sarvaiya, B. Seshadri,” Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review”. Energy Procedia, 33 (2013) 311-321. https://doi.org/10.1016/J.EGYPRO.2013.05.072
- Mamta, K.K. Maurya, V.N. Singh,” Enhancing the Performance of an Sb 2 Se 3 -Based Solar Cell by Dual Buffer Layer”, 13, Layer. Sustainability 13 (2021) 12320. https://doi.org/10.3390/su132112320
- M. Lameirinhas, R.A., P. Correia V. Bernardo, C., N. Torres, J.P. et al, al. “Modelling the effect of defects and cracks in solar cells’. Scientific Reports 13 (2023) 12490. https://doi.org/10.1038/s41598-023-39769-0.
- F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, “Defects engineering for high-performance perovskite solar cells”. npj Flexible Electronics 2 (2018) 22. https://doi.org/10.1038/s41528-018-0035-z
- W. Zhao, W. Zhou, X. Miao, 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2012) 502-505. https://doi.org/10.1109/NEMS.2012.6196826.
- P. Ci, X. Tian, J. Kang, A.Salazar, K. Eriguchi, S.Warkander, K. Tang, J. Liu, Y. Chen, S. Tongay, W. Walukiewicz, J. Miao, O. Dubon, J. Wu, “Chemical trends of deep levels in van der Waals semiconductors”. Nat. Commun. 11 (2020) 5373. https://doi.org/10.1038/s41467-020-19247-1
- W. Walukiewicz, “Amphoteric native defects in semiconductors”. The Journal of Physical Chemistry Letters, 9(14) (2018) 3878-3885. https://doi.org/10.1063/1.101174
- K. Cao, Y. Cheng, W. Zuo, B. Cai, Y. Wu, J. Zhu, Y. Zhu, H. Ning, Y. Shen, W. Shen, L. Liu, S. Chen, “Ionic compensation for defect reduction and enhanced performance of tin-based perovskite solar cells”. J power sources 558 (2023) 232595. https://doi.org/10.1016/J.JPOWSOUR.2022.232595
- W.Walukiewicz, I. Rey-Stolle, G. Han, M. Jaquez, D. Broberg, W. Xie, M. Sherburne, N. Mathews, M. Asta, “Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics”. J. Phys Chem Lett. 9 (2018) 3878-3885. https://doi.org/10.1021/acs.jpclett.8b01446
- D. Ju, Y. Dang, Z. Zhu, H. Liu, C.C. Chueh, X. Li, L.Wang, X. Hu, A.K.Y. Jen, X. Tao, “Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1-xBr3 Single Crystals”.Chem Mater. 30(5) (2018) 1556–1565. https://doi.org/10.1021/acs.chemmater.7b04565
- M.C. Naylor, D. Tiwari, A. Sheppard, J. Laverock., S, Campbell, B. Ford, X. Xu, M.D.K. Jones, Y. Qu, P. Maiello, V. Barrioz, N.S. Beattie, N.A. Fox, D.J. Fermin, G. Zoppi, “Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.” Faraday Discussions 239 (2022) 70-84. https://doi.org/10.1039/d2fd00069e
- P. Punathil, E. Artegiani, S. Zanetti, L. Lozzi, V. Kumar, A. Romeo, “A simple method for Ge incorporation to enhance performance of low temperature and non- vacuum based CZTSSe solar cells”, Sol Energy 236 (2022) 599-607. https://doi.org/10.1016/j.solener.2022.03.027
- C. Gao, Y. Sun, W. Yu, “Influence of Ge Incorporation from GeSe 2 Vapor on the Properties of Cu 2 ZnSn(S,Se) 4 Material and Solar Cells”, Coatings 8(9) (2018) 304. https://doi.org/10.3390/coatings8090304
- L.K. Ono, S. Liu (Frank), Y. Qi, “Reducing Detrimental Defects for High-Performance Metal Halide Perovskite Solar Cells”. Angewandte Chemie International Edition 59(17) (2019) 6676-6698, https://doi.org/10.1002/anie.201905521.
- M. He, C. Yan, J. Li, M.P. Suryawanshi, J. Kim, M.A. Green, X. Hao, “Kesterite Solar Cells: Insights into Current Strategies and Challenges”, Adv. Sci. 8 (2021) 2004313. https://doi.org/10.1002%2Fadvs.202004313
- J. Kumar, P. Srivastava, M. Bag,. “Advanced Strategies to Tailor the Nucleation and Crystal Growth in Hybrid Halide Perovskite Thin Films”. Solid Stat Chemis 10 (2022) 842924. https://doi.org/10.3389/fchem.2022.842924
- M.A. Islam, M.N.B. Alamgir, S.I. Chowdhury, S.M.B. Billah, “Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency”. Journal of Ovonic Research, 18(3) (2022) 395–409. https://doi.org/10.15251/JOR.2022.183.395.
- K. Fatema, M.S. Arefin, “Enhancing the efficiency of Pb-based and Sn-based perovskite solar cell by applying different ETL and HTL using SCAPS-ID. Optical Materials 125 (2022) 112036. https://doi.org/10.1016/J.OPTMAT.2022.112036.
- S. Essig; C. Allebé, T. Remo; J.F. Geisz; M.A. Steiner; K. Horowitz; L. Barraud; J.S. Ward; M. Schnabel; A. Descoeudres; et al. “Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions”. Nat.Energy 2 (2017) 17144. https://doi.org/10.1038/nenergy.2017.144.
- M.M. Salah, A. Zekry; A. Shaker; M. Abouelatta; M. Mousa; A. Saeed, “Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell”. Energies 15 (2022) 6326. https://doi.org/10.3390/en15176326.
- A.D.K. Kenfack, N.M. Thantsha, M. Msimanga, “Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D”. Solar 3(3) (2023) 458-472. https://doi.org/10.3390/SOLAR3030025.
- B. Saha, B.K. Mondal, S.K. Mostaque, M. Hossain, J. Hossain, “Numerical modeling of CuSbSe2-based dual-heterojunction thin film solar cell with CGS back surface layer”. AIP Advances 13 (2023) 025255. https://doi.org/10.1063/5.0133889
- K.M. Katubi, N.S. Shiong, M.Z. Pakhuruddin, M.A. Alkhalayfeh, S.A. Abubaker, M.R. Al-Soeidat, “Over 35% efficiency of three absorber layers of perovskite solar cells using SCAPS 1-D”. Optik 297 (2024) 171579. https://doi.org/10.1016/J.IJLEO.2023.171579.
- M.H. Azar; S. Aynehband; H. Abdollahi; H. Alimohammadi; N. Rajabi; S. Angizi; V. Kamraninejad; R. Teimouri; R. Mohammadpour; A. Simchi, “SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active Layer and Hole Transport Materials”. Photonics 10 (2023) 271. https://doi.org/10.3390/photonics10030271
- M.M. Salah, A. Zekry, A. Shaker, M. Abouelatta, M. Mousa, A. Saeed, “Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell”. Energies 15(17) (2022) 6326. https://doi.org/10.3390/EN15176326
- F. Baig, Y.H. Khattak, S. Ullah, B.M. Soucase, S. Beg, H. Ullah, Numerical analysis a guide to improve the efficiency of experimentally designed solar cell. Applied Physics A: Materials Science and Processing, 124(7) (2018), 1–8. https://doi.org/10.1007/S00339-018-1877-X
- A. Houimi, S.Y. Gezgin, B. Mercimek, H.Ş. Kılıç, “Numerical analysis of CZTS/n-Si solar cells using SCAPS-1D. A comparative study between experimental and calculated outputs.” Optical Materials 121 (2021) 111544. https://doi.org/10.1016/J.OPTMAT.2021.111544
