Have a personal or library account? Click to login
Effect of Rapid Thermal Annealing on Cuo Nanoparticles Cover

References

  1. Khan, I., Saeed, K., & Khan, I. Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry (2017) doi:10.1016/j.arabjc.2017.05.011
  2. Rehman, S., Mumtaz, A., & Hasanain, S. K., Size effects on the magnetic and optical properties of CuO nanoparticles, Journal of Nanoparticle Research, 13(6), (2010) 2497–2507, doi:10.1007/ s11051-010-0143-8
  3. Neeleshwar, S., Chen, C. L., Tsai, C. B., Chen, Y.Y, Chen, C.C., Shyu, S. G., Seehra, M.S., Size-dependent properties of CdSe quantum dots. Physical Review B, 71(20), (2005) 201307R doi:10.1103/physrevb.71.201307
  4. Anandan, S., Lee, G. J., & Wu, J. J. Sonochemical synthesis of CuO nanostructures with different morphology. Ultrasonics Sonochemistry, 19(3), 682– 686(2012) doi:10.1016/j.ultsonch.2011.08.0
  5. Yu. P. Sukhorukov*, B. A. Gizhevskii, E. V. Mostovshchikova, A. Ye. Yermakov, S. N. Tugushev, and E. A. Kozlov, Nano-crystalline copper oxide for selective solar energy absorbers, Tech. Phys. Lett. 32, 132 (2006)
  6. Zhang, H., & Zhang, M., Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors, Materials Chemistry and Physics, 108(2-3), (2008) 184187. doi:10.1016/ j.matchemphys.2007.10
  7. Devi, H.S., Singh, T.D., Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange. Adv. Electr. Comput. Eng. 4(1) (2014) 838.
  8. Zhu, J., Li, D., Chen, H., X Yang, L Lu, X Wang, Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Materials Letters, 58(26), (2004) 3324– 3327. doi:10.1016/j.matlet.2004.06.031
  9. Mallick, P., Sahu, S., Structure, Microstructure and Optical Absorption Analysis of CuO Nanoparticles Synthesized by Sol-Gel Route. J. Nanosci. Nanotechnol. 2(3), (2012) 71-74. DOI: 10.5923/j.nn.20120203.05
  10. Touka, N., Tabli, D., Badari, K., Effect of annealing temperature on structural and optical properties of copper oxide thin films deposited by sol-gel spin coating method, Journal Of Optoelectronics And Advanced Materials, 21 (11-12) (2019) 698 – 701
  11. Raship, N. A., Sahdan, M. Z., Adriyanto, F., Nurfazliana, M. F., Bakri, A. S, Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique (2017). doi:10.1063/1.4968374
  12. Serin, N., Serin, T., Horzum, Ş., & Çelik, Y, Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semiconductor Science and Technology, 20(5), (2005) 398–401. doi:10.1088/0268-1242/20/5/012
  13. Masudy-Panah, S., Moakhar, R. S., Chua, C. S., Kushwaha, A., Wong, T. I. and Dalapati, G. K., Rapid thermal annealing assisted stability and efficiency enhancement in a sputter deposited CuO photocathode. RSC Advances, 6(35), 29383–29390 (2016) doi:10.1039/c6ra03383k
  14. Gottesman, R., Song, A., Levine, I., Krause, M., Islam, A. N., Abou-Ras, D., Dittrich, T., Van de Krol, R. and Chemseddine, A., Pure CuBi2 O4 Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi2 O3 /CuO Grown by Pulsed Laser Deposition. Advanced Functional Materials, 1910832 (2020)
  15. Bergum, K., Riise, H. N., Gorantla, S., Krause, M., Islam, A. N., Abou-Ras, D., Dittrich, T., Van de Krol, R. and Chemseddine, A, Improving carrier transport in Cu2O thin films by rapid thermal annealing. Journal of Physics: Condensed Matter, 30(7) (2018), 075702. doi:10.1088/1361-648x/aaa5f4
  16. Vasiliev, R. B., Rumyantseva, M. N., Gaskov. A. M. (1998). CuO/SnO2 thin film etero structures as chemical sensors to H2S. Sensor Actuat B. 50, 186-193.
  17. Ishihara, T., Higuchi, M., Takagi, T., Ito, M., Nishiguchi, H., Takita, Y., Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO2 sensor, Journal of Materials Chemistry, 8(9) (1998) 2037– 2042. doi:10.1039/a801595c
  18. Mammah, S. L., Opara, F. E., Omubo-Pepple, V. B., Joseph Effiom-Edem Ntibi, Sabastine Chukwuemeka Ezugwu, Fabian Ifeanyichukwu Ezema, Annealing effect on the optical and solid state properties of cupric oxide thin films deposited using the Aqueous Chemical Growth (ACG) method. Natural Science, 05 (03) (2013) 389–399 doi:10.4236/ns. 2013.53052
  19. Hashim, H., Samat, S. F. A., Shariffudin, S. S., & Saad, P. S. M. (2018). Investigation of Annealing Temperature on Copper Oxide Thin Films Using Sol-Gel Spin Coating Technique. IOP Conference Series: Materials Science and Engineering, 340, 012008. doi:10.1088/1757-899x/340/1/012008
  20. Wojcieszak, D., Obstarczyk, A., Mankowska, E., Mazur, M., Kaczmarek, D., Zakrzewska, K., Mazur, P., Domaradzki, J. Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Materials Research Bulletin, 147 (2022) 111646 doi.10.1016/j.materresbull.2021.111646
  21. Al Armouzi, N., El Hallani, G., Liba, A., Zekraoui, M., Hilal, H.S., Kouider, N., Mabrouki, M., Effect of annealing temperature on physical characteristics of CuO films deposited by sol-gel spin coating. Materials Research Express. (2019) 10.1088/2053-1591/ab44f3
  22. Akgul, U., Yildiz, K., & Atici, Y. (2016). Effect of annealing temperature on morphological, structural and optical properties of nanostructured CuO thin film, The European Physical Journal Plus, 131(4). doi:10.1140/epjp/i2016-16089-3
  23. Martínez-Saucedo, G., Torres-Delgado, G., Márquez-Marín, J., Zelaya-Ángel, O., Castanedo-Pérez, R., Copper oxide and tin oxide amorphous-thin-film heterojunction diodes obtained via solution-based techniques with increased rectification after rapid thermal annealing treatments. Journal of Alloys and Compounds, (2020) 157790. doi:10.1016/j.jallcom.2020.157790
  24. Xiong, L., Xiao, H., Chen, S., Chen, Z., Yi, X., Wen, S., Zheng, G., Ding, Y., Yu, H., Fast and simplified synthesis of cuprous oxide nanoparticles: annealing studies and photocatalytic activity. RSC Adv., 4(107) (2014) 6211562122. doi:10.1039/c4ra12406e
  25. Liu, D., Zhou, W., Wu, J., CuO-CeO2/ZSM-5 composites for reactive adsorption of hydrogen sulphide at high temperature. Can. J. Chem. Eng. 94, (2016) 2276–2281. http://dx.doi.org/10.1002/cjce.22613.
  26. Maini, A., & Shah, M. A., Investigation on physical properties of nanosized copper oxide (CuO) doped with cobalt (Co): A material for electronic device application. International Journal of Ceramic Engineering & Science. (2021) doi:10.1002/ces2.10097
  27. Gawande, M. B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R. S., Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis, Chemical Reviews, 116(6)(2016)37223811 doi:10.1021/ acs.chemrev.5b00482
  28. Ovchinnikov, S. G., Gizhevskiĭ, B. A., Sukhorukov, Y. P., Ermakov, A. E., Uĭmin, M. A., Kozlov, E. A., Kotov, Ya. A. & Bagazeev, A. V, Specific features of the electronic structure and optical spectra of nanoparticles with strong electron correlations. Physics of the Solid State, 49(6) (2007) 11161120. doi:10.1134/s1063783407060169
  29. Eranna, G., Joshi, B. C., Runthala, D. P., & Gupta, R. P., Oxide Materials for Development of Integrated Gas SensorsA Comprehensive Review. Critical Reviews in Solid State and Materials Sciences, 29(3-4)(2004) 111–188. doi:10.1080/10408430490888977
  30. Gao, P., Chen, Y., Lv, H., Li, X., Wang, Y., Zhang, Q., Synthesis of CuO nanoribbon arrays with noticeable electrochemical hydrogen storage ability by a simple precursor dehydration route at lower temperature. International Journal of Hydrogen Energy, 34(7 (2009) 30653069. doi:10.1016/j.ijhydene.2008.12.05
  31. Arbuzova, T. I., Gizhevskii, B. A., Naumov, S. V., Korolev, A.V., Arbuzov, V.L., Shal’nov, K.V., Druzhkov, A.P., Temporal changes in magnetic properties of high-density CuO nanoceramics. Journal of Magnetism and Magnetic Materials, 258(2003)-259 342–344. doi:10.1016/s0304-8853(02)01052-1
  32. Gao, X. P., Bao, J. L., Pan, G. L., Zhu, H. Y., Huang, P. X., Wu, F., Song, D. Y. Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery. The Journal of Physical Chemistry B, 108(18) (2004) 5547–5551. doi:10.1021/jp037075k
  33. Udani, P. P. C., Gunawardana, P.V.D.S., Lee, H. C., Kim, D. H., Steam reforming and oxidative steam reforming of methanol over CuOCeO2 catalysts, Int. J. Hydrogen Energy 34 (2009)7648
  34. Toolabi, A., Zare, M., Rahmani, A., Hoseinzadehd, E., Sarkhoshe, M., and Zare., M. Investigating Toxicity and Antibacterial Aspects of Nano ZnO, TiO2 and CuO with Four Bacterial Species. J. Basic. Appl. Sci. Res. 3.2 (2013) 221-226.
  35. Jadhav, S., Gaikwad, S., Nimse, M., & Rajbhoj, A., Copper Oxide Nanoparticles: Synthesis, Characterization and Their Antibacterial Activity. Journal of Cluster Science, 22(2) (2011) 121–129. doi:10.1007/s10876-011-0349-7
  36. Rahim, A., Rehman, Z. U., Mir, S., Muhammad, N., Rehman, F., Nawaz, M. H., Yaqub, M., Siddiqi, S. A., Chaudhry, A. A, A non-enzymatic glucose sensor based on CuO-nanostructure modified carbon ceramic electrode. Journal of Molecular Liquids, 248 (2017) 425–431. doi:10.1016/j.molliq.2017.10.087
  37. Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K., Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine & Pharmacotherapy, 89 (2017) 1067–1077. doi:10.1016/j.biopha.2017.02.101
  38. Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., & Oyebamiji, A. K., Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 6(7) (2020), e04508. doi:10.1016/j.heliyon.2020.e04508
  39. Unutulmazsoy, Y., Cancellieri, C., Lin, L., Jeurgens, L. P. H., Jeurgens, Reduction of thermally grown single-phase CuO and Cu2O thin films by in-situ time-resolved XRD, Applied Surface Science 588 (2022)152896
  40. Thi, T. H., Cong1, B. T., Hai, P. N., Hoang, N., Chinh, H. V., Huong, B. T., N. T. Linh, N. T., Son, B. T., Hoa, T. T. Q., Viet, T. N., Preparation of CuO Nanorods by Thermal Oxidation in Ozone Ambient, VNU Journal of Science: Mathematics – Physics, Vol. 38, No. 2 (2022) 9-15
  41. Siddiqui, V. U., Ansari, A., Khan, I., Akram, M.K., Siddiqi, W.A. Sol-gel synthesis of copper (II) oxide/alginate (CuO/Alg) bio-nanocomposite and effects of rapid thermal annealing on its properties and structure. Materials Research Express, 6(11) (2019) 115095. doi:10.1088/2053-1591/ab4ace
  42. Khan, S. N., Ge, S., Gu, E., Karunakaran, S.K., Yang, W., Hong, R., Mai, Y., Lin, X., Yang, G., Bifacial Cu 2 ZnSn(S,Se) 4 Thin Film Solar Cell Based on Molecular Ink and Rapid Thermal Processing. Advanced Materials Interfaces, 8(18) (2021) 2100971. doi: 10.1002/admi.202100971
  43. Mainz, R., Walker, B. C., Schmidt, S.S., Zander, O., Weber, A., Rodriguez-Alvarez, H., Just, J., Klaus, M., Agrawal, R., Unold, T. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors., Phys. Chem. Chem. Phys., 15(2013) 18281
  44. Baqer, A. A., Matori, K. A., Al-Hada, N.M., Shaari, A.H., Kamari, H.M., Saion, E., Chyi, J.L.Y., Azurahanim Abdullah, C, Synthesis and characterization of binary (CuO)0.6 (CeO2)0.4 nanoparticles via a simple heat treatment method. Results in Physics, 9 (2018) 471–478. doi:10. 1016 /j.rinp.2018.02.079
  45. Rollett, A., Humphreys, F. J., Rohrer, G. S., & Hatherly, H. Recrystallization-and Related Annealing Phenomena, Elsevier, 2(2004)658
  46. Lee, Y.C., Hu, S.Y., Water, W., Tiong, K.K., Feng, Z.C., Chen, Y.T., Huang, J.C., Lee, J.W., Huang, C.C., Shen, J. L., Cheng, M.H, Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates. Journal of Luminescence, 129(2) (2009) 148–152. doi:10.1016/j.jlumin.2008.09.003
  47. Puchert, M. K., Timbrell, P. Y., & Lamb, R. N. (1996). Postdeposition annealing of radio frequency magnetron sputtered ZnO films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14(4), 2220–2230. doi:10.1116/1.580050
  48. Cotterill, P. and Mould, P. R. (1976). Recrystallization and Grain Growt in Metals. Surrey Univ. Press, London. Novikov, V.
  49. Rios, P.R., Siciliano Jr, F., Sandim, H.R.Z., Plaut, R.L., Padilha, A.F., Nucleation and Growth During Recrystallization, Materials Research, Vol. 8, (3) (2005) 225-238.
  50. Zahou, L., Wang, S., Ma, H., Ma, S., Xu, D., Guo, Y., Size-controlled synthesis of copper nanoparticles in supercritical water. Chemical Engineering Research and Design, 98. (2015) https://doi.org/10.1016/j.cherd.2015.04.004
  51. Voyiadjis, G. Z., Faghihi, D., & Zhang, Y., A theory for grain boundaries with straingradient plasticity. International Journal of Solids and Structures, 51(10) (2014)1872–1889. doi:10.1016/j.ijsolstr .2014.01.02
  52. Ghobadi, N. Band gap determination using absorption spectrum fitting procedure. International Nano Letters, 3(1) (2013) doi:10.1186/2228-5326-3-2
  53. Aguirre, J. M., Gutiérrez, A., & Giraldo, O. Simple route for the synthesis of copper hydroxy salts. Journal of the Brazilian Chemical Society, 22(3) (2011) 546–551. doi:10.1590/s0103-50532011000 300019
  54. Henrist, C., Traina, K., Hubert, C., Toussaint, G., Rulmont, A., Cloots, R., Study of the morphology of copper hydr oxylnitrate nanoplatelets obtained by controlled double jet precipitation and ureahydrolysis. J. Cryst. Growth. 254 (2003)176-187 https://doi.org/10.1016/S0022-0248(03)01145-X
  55. Liu, J., Huang, X., Li, Y., Sulieman, K., He, X., Sun, F., Hierarchical nano structures of cupric oxide on a copper substrate: controllable morphology and wettability. J. Mater. Chem.16 (45) (2006) 4427-4434 https://doi.10.1039/C6DT04500F
  56. Akgul F A, Akgul G, Yildirim, N., Unalan, H. E., Turan, R., Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films Mater. Chem. Phys. 147 (2014) 987–995 https://doi.org/10.1016/j.matchemphys.2014.06.047
DOI: https://doi.org/10.2478/awutp-2024-0006 | Journal eISSN: 2784-1057 | Journal ISSN: 1224-9718
Language: English
Page range: 76 - 94
Submitted on: Dec 24, 2023
Accepted on: Mar 19, 2024
Published on: Dec 12, 2024
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Maria Nor Elyakin Boumezrag, Kenza Almi, Said Lakel, Noor El Imane Zaghoum, Hanna Touhami, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.