Have a personal or library account? Click to login
Actualization of Semi-Empirical Equation for UV Index Cover
By: Adriana Vasi and  Nicoleta Stefu  
Open Access
|Nov 2022

References

  1. [1] World Health Organization (WHO), Global solar UV index: A practical guide, Geneva, Switzerland (2002)
  2. [2] de Gruij F.R., van der Leun J.C., Environment and health: 3. Ozone depletion and ultraviolet radiation, CMAJ (2000)163(7):851-5.
  3. [3] Calbo´, J., D. Page‘s, and J.-A. Gonza´lez, Empirical studies of cloud effects on UV radiation: A review, Rev. Geophys., (2005) 43, RG2002
  4. [4] A. F. Bais, R. L. McKenzie, G. Bernhard, P. J. Aucamp, M. Ilyas, S. Madronich and K. Tourpali, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci. (2015) 14, 19
  5. [5] Aliyeva, Y.N., Mammadova, K.A. & Huseynova, A.N. Model Studies of Cloud Effects for Surface UV Radiation, Aerosol Sci (2022) Eng 6, 212–214
  6. [6] Gueymard, C.A., 1993. Mathematically integrable parameterization of clear sky beam and global irradiances and its use in daily irradiation applications. Sol. Energy 50, 385–397.
  7. [7] Paulescu, M., Schlett, Z., 2003. A simplified but accurate spectral solar irradiance model Theor. Appl. Climatol. 75, 203–211.
  8. [8] Lamy, K., Portafaix, T., Brogniez, C., Godin-Beekmann, S., Bencherif, H., Morel, B., Pazmino, A., Metzger, J.M., Auriol, F., Deroo, C., Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics, Atmos. Chem. Phys. (2018)18, 227–246
  9. [9] Wenmin Qin, Lunche Wang, Jing Wei, Bo Hu, Xun Liang, A novel efficient broadband model to derive daily surface solar Ultraviolet radiation (0.280–0.400 μm), Science of the Total Environment 735 (2020) 139513
  10. [10] Gonzalez-Rodriguez L, de Oliveira AP, Rodriguez-Lopez L et al., A study of UVER in Santiago, Chile based on long-term in situ measurements (five years) and by empirical modelling, Energies (2021) 14:21.
  11. [11] Barbero, F.J., Lopez, G., Batlles, F.J., Determination of Daily Solar Ultraviolet Radiation Using Statistical Models and Artificial Neural Networks. (2006) Annales Geophysicae. Copernicus GmbH, pp. 2105–2114.
  12. [12] Jinyang Wu, Wenmin Qin, Lunche Wang, Bo Hu, Yan Song, Ming Zhang, Mapping clear-sky surface solar ultraviolet radiation in China at 1 km spatial resolution using Machine Learning technique and Google Earth Engine, Atmospheric Environment 286 (2022) 119219
  13. [13] A. A. Masrur Ahmed, Mohammad Hafez Ahmed, Sanjoy Kanti Saha, Oli Ahmed, Ambica Sutradhar, Optimization algorithms as training approach with hybrid deep learning methods to develop an ultraviolet index forecasting model, Stochastic Environmental Research and Risk Assessment (2022) https://doi.org/10.1007/s00477-022-02177-3
  14. [14] Lisdelys González‑Rodríguez, Lien Rodríguez‑López, Jorge Jiménez, Jorge Rosas, Wirmer García, Iongel Duran‑Llacer, Amauri Pereira de Oliveira, Boris Barja, Spatio‑temporal estimations of ultraviolet erythemal radiation in Central Chile, Air Quality, Atmosphere & Health (2022) 15:837–852
  15. [15] World Meteorological Organization (WMO), Executive Summary: Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 67 pp., Geneva, Switzerland, 2018
  16. [16] Sabine Robrecht, Bärbel Vogel, Simone Tilmes, and Rolf Müller, Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering, Atmos. Chem. Phys., 21, 2427–2455, 202, https://doi.org/10.5194/acp-21-2427-2021
  17. [17] Y. N. Aliyeva, K. A. Mammadova, A. N. Huseynova, Model Studies of Cloud Effects for Surface UV Radiation, Aerosol Science and Engineering (2022) 6:212–214
  18. [18] Krzyscin, J. W., and S. Puchalski, Aerosol impact on the surface UV radiation from the ground-based measurements taken at Belsk, Poland, 1980 – 1996, J. Geophys. Res., (1998) 103(D13), 16175 – 16181
  19. [19] Erlick, C., and J. E. Frederick, Effects of aerosols on the wavelength dependence of atmospheric transmission in the ultraviolet and visible: 2. Continental and urban aerosols in clear skies, J. Geophys. Res., (1998) 103(D18), 23275 – 23285.
  20. [20] Seckmeyer, G., Coordinated ultraviolet radiation measurements, Radiation Protection Dosimetry Vol. 91, Nos 1–3, pp. 99–103 (2000) Nuclear Technology Publishing
  21. [21] Krotkov, N. A., P. K. Bhartia, J. R. Herman, V. Fioletov, and J. Kerr (1998), Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud-free case, J. Geo-phys. Res., 103(D8), 8779 – 8793.
  22. [22] Blumthaler, M. (1993), UV-radiation and ozone depletion, in Environmental Effects of Ultraviolet Radiation, edited by M. Tevini, pp. 79 – 94, Lewis, Boca Raton, Fla
  23. [23] Piazena, H., The effect of altitude upon the solar UV-B and UV-A irradiance in the tropical Chilean Andes, (1996) Sol. Energy, 57, 133 – 140
  24. [24] Frederick, J. E., A. E. Koob, A. D. Alberts, and E. C. Weatherhead (1993), Empirical studies of tropospheric transmission in the ultraviolet: Broadband measurements, J. Appl. Meteorol., 32, 1883 – 1892
  25. [25] Blumthaler, M., A. R. Webb, G. Seckmeyer, A. F. Bais, M. Huber, and B. Mayer, Simultaneous spectroradiometry: A study of solar UV irradiance at two altitudes, Geophys. Res. Lett., (1994) 21(25), 2805 – 2808
  26. [26] Blumthaler, M., W. Ambach, and W. Rehwald (1992), Solar UV-A and UV-B radiation fluxes at two alpine stations at different altitudes, Theor. Appl. Climatol., 46, 39 – 44
  27. [27] Bernhard, G. and Seckmeyer, G, Measurements of spectral solar UV irradiance in tropical Australia, J. Geophys. Res. (1997) 102, 8719-8730. doi: 10.1029/97JD00072
  28. [28] Sen Mandi, S. Effect of UV Radiation on Life Forms. In: Natural UV Radiation in Enhancing Survival Value and Quality of Plants. (2016) Springer, New Delhi. https://doi.org/10.1007/978-81-322-2767-0_2
  29. [29] SCCP, Opinion on Biological effects of ultraviolet radiation relevant to health with particular reference to sunbeds for cosmetic purposes (2006) https://health.ec.europa.eu/other-pages/health-sc-basic-page/opinion-biological-effects-ultraviolet-radiation-relevant-health-particular-reference-sunbeds_en
  30. [30] WMO, Report of the WMO-WHO Meeting of Experts on Standardization of UV Indices and their Dissemination to the Public, Les Diablerets, Switzerland, 21-25 July 1997, WMO TD No. 921, WMO Report No. 127, WMO, Geneva, Switzerland, 1998
  31. [31] CIE and WMO (2014) Rationalizing nomenclature for UV doses and effects on humans, Vienna, Austria
  32. [32] McKinlay, A. F., and B. L. Diffey (1987), A reference action spectrum for ultraviolet induced erythema in human skin, CIEJ., 6, 17 – 22.
  33. [33] Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 124:869–871.
  34. [34] McKenzie RL, Lucas RM, Reassessing impacts of extended daily exposure to low level solar UV radiation. Sci Rep (2018) 8:1–5.
  35. [35] Slavica Malinović-Milićević, ZoranMijatović, Gorica Stanojević, Milan M. Radovanović, Vladimir Popović, Health risks of extended exposure to low-level UV radiation – An analysis of ground-based and satellite-derived data, Science of the Total Environment 831 (2022) 154899
  36. [36] https://www.meteoromania.ro/vremea/indice-radiatie-ultravioleta/
  37. [37] https://www.temis.nl/uvradiation/UVarchive.php
  38. [38] Madronich, S.: Analytic Formula for the Clear-sky UV Index, Photochem. Photobiol. Sci., 83, 1537–1538, (2007)
  39. [39] Wilson, S. R., Madronich, S., Longstreth, J. D. & Solomon, K. R. Interactive efects of changing stratospheric ozone and climate on composition of the troposphere, air quality, and consequences for human and ecosystem health. (2019) Photochem. Photobiol. Sci. 18, 775–803.
  40. [40] Rieder, H.E., F. Holawe, S. Simic, M. Blumthaler, J.W. Krzyscin, J.E. Wagner, A. W. Schmalwieser, and P. Weihs, Reconstruction of erythemal UV-doses for two stations in Austria: a comparison between alpine and urban regions. Atmos. Chem. Phys., 2008, 8, 6309–6323.
  41. [41] Deliang Chen, Hans Weiteng Chen, Using the Köppen classification to quantify climate variation and change: An example for 1901–2010, Environmental Development, Volume 6, (2013) 69-79
DOI: https://doi.org/10.2478/awutp-2022-0008 | Journal eISSN: 2784-1057 | Journal ISSN: 1224-9718
Language: English
Page range: 108 - 125
Submitted on: Aug 19, 2022
|
Accepted on: Sep 30, 2022
|
Published on: Nov 28, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Adriana Vasi, Nicoleta Stefu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.