Have a personal or library account? Click to login
Geo-Electrical Method of Assessment of Coefficient of Permeability and Porosity of Soil of a Poultry Farmland Cover

Geo-Electrical Method of Assessment of Coefficient of Permeability and Porosity of Soil of a Poultry Farmland

Open Access
|Dec 2021

References

  1. [1] L.M Meyers, Impact of Poultry Mortality Pits on Groundwater Quality in Georgia. Proceedings of the United States Animal Health Association (1998) 555-562
  2. [2] J.P. Greenhouse, and M. Monier-William, Geophysical Monitoring of groundwater contamination around waste disposal sites, Groundwater Monitoring Review. (1985)5 (4) 47-5910.1111/j.1745-6592.1985.tb00940.x
  3. [3] L.M. Abriola, Modeling contaminant transport in the subsurface: An interdisciplinary challenge, Rev. Geophys. (1987)25, 125 - 134.10.1029/RG025i002p00125
  4. [4] J. Bear, (1972). Dynamics of Fluids in Porous Media Elsevier Inc., New York (1972)
  5. [5] S. Whitaker, Flow in Porous Media 1: A Theoretical Derivation of Darcy’s law, Transport Porous Med, (1986) 1, 3-2510.1007/BF01036523
  6. [6] B.J. Christensen, T.O. Mason, and H.M. Jennings, Comparison of measured and calculated permeability for hardened cement pastes. Cement and Concrete Research (1996).26, (9), 1325-133410.1016/0008-8846(96)00130-5
  7. [7] E. Huenges, and G. Zimmermann, Rock permeability and fluid pressure at the KTB. Oil & Gas Science and Technology – Rev. IFP (1999).54, (6), 689 – 69410.2516/ogst:1999058
  8. [8] H. Sudo, T. Tanaka, T. Kobayashi, T. Kondo, T. Takahashi, M. Miyamoto, and M. Amagai, Permeability imaging in granitic rocks based on surface resistivity profiling. Exploration Geophysics (2004).35, 56 – 61.10.1071/EG04056
  9. [9] H. Moo-Young, A. Johnson, D. Carson, C. Lew, S. Liu, and K. Hancook. Characterization of infiltration rates from landfills: Supporting groundwater modeling effort. Environmental Monitoring Assessment, (2004).96: 283 – 31110.1023/B:EMAS.0000031734.67778.d7
  10. [10] P.F. Hudak, Groundwater monitoring strategies for variable versus constant contaminant loading functions. Environmental Monitoring Assessment (1998) 50: 271 – 28810.1023/A:1005806330741
  11. [11] M.R. Stoline, R.N. Passerp, and J.R. Brooker, Clay barrier systems for waste disposal facilities, E and FN Spon, London, United Kingdom (1995).
  12. [12] G.J. Foose, C.H. Benson, andT.B. Edil Comparison of solute transport in three composite liners Journal of Geotechnical and Geoenvironmental Engineering. (2002). 128, 510.1061/(ASCE)1090-0241(2002)128:5(391)
  13. [13] M. Sophocleous, Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal, (2002) 10(1) - 52-67.10.1007/s10040-001-0170-8
  14. [14] D. Granato, and F. Smith. Electrical tomography monitoring of the excavation damaged zone of the gallery 04 in the Montterri rock laboratory: field experiments, modeling, and relationship with structural geology. Appl Clay Sci (1999)33: 21-3410.1016/j.clay.2006.03.008
  15. [15] E.A. Ayolabi, and D.Y. Peter. Hydrochemical and electrical resistivity assessment of the impact of solid waste on groundwater at Oke Alfa refuses dumpsite, Lagos, Nigeria. Journal of science and engineering (2005)12 (1), 5936-5946
  16. [16] A.A.R. Zohdy, Geoelectrical and Seismic refraction investigations near San Jose, California Groundwater, (1965)3 (3) 41-4810.1111/j.1745-6584.1965.tb01220.x
  17. [17] L.M. Page, The use of the geoelectric method for investigating geologic conditions in Santa Clara County California J. of Hydrology (1969).7 (2) 167-17710.1016/0022-1694(69)90054-7
  18. [18] T. Meidav, An electrical resistivity survey for groundwater. Geophysics (1960). 25, (5), 1077 - 109310.1190/1.1438789
  19. [19] A.A.R. Zohdy, Earth resistivity and seismic refraction in Clara County, California, Ph.D. thesis (unpublished), Stanford University, (1964). 131-135
  20. [20] D.H. Griffiths, and R.D. Barker: Two dimension resistivity imaging and modeling of complex geology, Journal of Applied Geophysics. (1993). Vol, 211-22610.1016/0926-9851(93)90005-J
  21. [21] E. Aristodemou, and A. Thomas-Betts. A DC resistivity and induced polarization investigation at a waste disposal site and its environment, Journal of Applied Geophysics (2000). 275-30210.1016/S0926-9851(99)00022-1
  22. [22] R. Guerin, M. L. Munoz, and A. Christopher, Leachate recirculation moisture content assessment by utilizing the geophysical technique, Waste Management (2004) 24: 785-79410.1016/j.wasman.2004.03.010
  23. [23] E. Cardell, and M. Bernabini, Two case studies of the determination of parameter of urban waste dumps Journal of Applied Geophysics, (1997).167-17410.1016/S0926-9851(96)00056-0
  24. [24] N.A. Gewande, D, R. Reinhart, P.A. Thomas, P.T. Mcreanor, Municipal solid waste in situ moisture content measurement using an electrical resistance sensor. Waste Management (2003).23: 667-67410.1016/S0956-053X(03)00100-4
  25. [25] N. Abu-Zeid, and G. Santarato. On the correspondence between resistivity and texture of loose sediments, saturated with salt-water, Near Surf Geophys. (2004). 310.3997/1873-0604.2004012
  26. [26] P.M. Soupios, M. Kouli, F. Vallianatos, A. Vafidis, and G. Stavroulakis, Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Kentis Basin in Chania (Crete- Greece). J. Hydrol. (2007). 338, 122-13110.1016/j.jhydrol.2007.02.028
  27. [27] S. Chandra, S. Ahmed, A. Rann, and B. Dewandel, Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J. Hydrol. (2008). 357, 218 – 22710.1016/j.jhydrol.2008.05.023
  28. [28] O. de Lima, and S. Niwas, Estimation of hydraulic parameters of Shaly sandstone aquifers from geoelectrical measurements J. Hydrol. (2000). 235 (1-2), 12-2610.1016/S0022-1694(00)00256-0
  29. [29] M. Loke, J. Chambers, D. Rucker, O. Kuras, and P. Wilkinson, P. Recent development in the direct-current geoelectrical imaging method. J. Appl. Geophys. (2013). 95. 135 – 15610.1016/j.jappgeo.2013.02.017
  30. [30] A. Samouelian, I. Cousin, A. Tabbagh, A. Bruand, and G. Richard, Electrical resistivity survey in soil science: a review. Soil Tillage Res. (2005). 83, 173-19310.1016/j.still.2004.10.004
  31. [31] M.A. Rahaman, Review of basement Geology of South-western Nigeria, in Geology of Nigeria, edited by Kogbe C. A. 2nd revised edition Elizabethan Publ. Co. Lagos. (1976). 41 – 58.
  32. [32] N.K. Grant, A computation of radiometric ages from Nigeria Journal of Mining and Geology: (1970).6: 37 – 54.
  33. [33] M.H. Loke, The inversion of two-dimensional resistivity data. Unpublished. Ph.D. thesis, Uni. Of Birmingham. 1994.
  34. [34] D. H. Griffiths. J. Turnbull and A. L. Olayinka. Two-dimensional resistivity mapping with a computer-controlled array. First Break (1990). 8 121-129.10.3997/1365-2397.1990008
  35. [35] W. M. Telford, L. P. Geldart, and R. E. Sheriff. Applied Geophysics, Cambridge University Press, U.K (1990).10.1017/CBO9781139167932
  36. [36] M. H. Loke, Electrical Imaging Surveys for Environmental and Engineering Studies, a practical guide to 2-d and 3-d surveys. Penang, Malaysia. (2000).
  37. [37] P. Kearey, and M. Brooks. An Introduction to Geophysical Exploration, Blackwell Science Publications, U.S.A. (2002).
  38. [38] T. Dahlin, and B. Zhou. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting. (2004) 52, 379-398.10.1111/j.1365-2478.2004.00423.x
  39. [39] M. H. Loke, and J. W. Lane. Inversion of data from electrical resistivity imaging surveys in water-covered areas. Exploration Geophysics. (2004) 35, 266-271.10.1071/EG04266
  40. [40] M. H. Loke, 2D, and 3D Electric Imaging Surveys, Geo-tomo Software Sdn Bsd. Malaysia (2010).
  41. [41] M. H. Loke, L. Acworth, and T. Darlin, A comparison of smooth and blocky inversion methods in 2D electrical Imaging surveys, Geophysics, (2003) 35, 266-271,10.1071/EG03182
  42. [42] C. Degroot-Hedlin and S. Constable. Occami’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics (1990)35 (12). 1613-1624.10.1190/1.1442813
  43. [43] M. H. Loke, and R. D. Baker, Least-square deconvolution of apparent resistivity pseudo-sections. Geophysics. (1995) 60, 1682-1690.10.1190/1.1443900
  44. [44] M. H. Loke, and R. D. Barker. Rapid least-squares inversion of apparent resistivity pseudo-sections by a quasi-Newton method. Geophysical Prospecting (1996) 44,(1) 133-152.10.1111/j.1365-2478.1996.tb00142.x
  45. [45] M. H. Loke, and R. D. Barker Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting. (1996) 44, 499-523.10.1111/j.1365-2478.1996.tb00162.x
  46. [46] P. Tsourlos, Modelling interpretation and inversion of multi-electrode resistivity survey data {DPhil Thesis], University of York, (1995)
  47. [47] R. Gopal, and A.S.R. Rao. Basic and applied soil mechanics 3rd edition New Age International publisher https://elementaryengineeringlibrary.com/civil-engineering/soil-mechanics/falling-head-variable-head-permeability-method. (2021)
  48. [48] X. Hao, B. C. Ball, J. L. B. Culley, M.R. Carter, and G.W. Parkin. Soil density and Porosity. Soil sampling and Methods of Analysis. CRC Press 2nd Edition Taylor and Francis Group. (2007) 745-752
  49. [49] H. W. Olsen, “Hydraulic Flow-through Saturated Clays”, Proc. Ninth National Conference on Clays and Clay Minerals, (1962)131 - 161.10.1016/B978-1-4831-9842-2.50011-0
  50. [50] J.E. Bowles, “Engineering Properties of Soils and Their Measurement”, McGraw Hill Book Co., New York (1970),
DOI: https://doi.org/10.2478/awutp-2021-0007 | Journal eISSN: 2784-1057 | Journal ISSN: 1224-9718
Language: English
Page range: 88 - 110
Submitted on: Jun 17, 2021
Accepted on: Sep 22, 2021
Published on: Dec 22, 2021
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Fakunle M. Alani, Abidoye L. Kolawole, Alabi O. Olalekan, Olatona G. Ismail, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.