References
- V. Adiyasuren, T. Batbold, M. Krnić, Hilbert-type inequalities involving di erential operators, the best constants and applications, Math. Inequal. Appl. 18 (2015), 111-124.
- V. Adiyasuren, T. Batbold, M. Krnić, Multiple Hilbert-type inequalities involving some di erential operators, Banach J. Math. Anal. 10 (2016), 320-337.
- L. E. Azar, The connection between Hilbert and Hardy inequalities, J. Inequal. Appl. 2013 (2013), 1-10.
- T. Batbold, Y. Sawano, Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces, Math. Inequal. Appl. 20 (2017), 263-283.
- B. Benaissa, M. Z. Sarikaya, On the refinements of some important inequalities with a finite set of positive numbers, Math. Methods Appl. Sci. 47 (2024), 9589-9599.
- A. Bényi, C. T. Oh, Best constant for certain multilinear integral operator, J. Inequal. Appl. 2006 (2006), 1-12.
- Q. Chen, B. C. Yang, A survey on the study of Hilbert-type inequalities, J. Inequal. Appl. 2015 (2015), 1-29.
- C. Chesneau, Some four-parameter trigonometric generalizations of the Hilbert integral inequality, Asia Mathematika 8 (2024), 45-59.
- H. Du, Y. Miao, Several new Hardy-Hilbert’s inequalities, Filomat 25 (2011), 153-162.
- I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Edition, Academic Press, 2007.
- G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934.
- Y. Hong, On multiple Hardy-Hilbert integral inequalities with some parameters, J. Inequal. Appl. 2006 (2006), 1-11.
- Z. Huang, B. C. Yang, A multidimensional Hilbert-type integral inequality, J. Inequal. Appl. 2015 (2015), 1-13.
- S. W. Jian, F. Z. Yang, All-sided generalization about Hardy-Hilbert integral inequalities, Acta Math. Sinica (China) 44 (2001), 619-626.
- Y. Li, Y. Qian, B. He, On further analogs of Hilbert’s inequality, Int. J. Math. Math. Sci. 2007 (2007), 1-6.
- W. T. Sulaiman, On Hardy-Hilbert’s integral inequality, J. Inequal. Pure Appl. Math. 5 (2004), 1-9.
- W. T. Sulaiman, New types of Hardy-Hilbert’s integral inequality, Gen. Math. Notes 2 (2) (2011), 111-118.
- B. Sun, A multiple Hilbert-type integral inequality with the best constant factor, J. Inequal. Appl. 2007 (2007), 1-14.
- J. F. Tian, Properties of generalized Hölder’s inequalities, J. Math. Inequal. 9 (2015), 473-480.
- D. C. Ullrich, A simple elementary proof of Hilbert’s inequality, Amer. Math. Monthly 120 (2013), 161-164.
- J. S. Xu, Hardy-Hilbert’s inequalities with two parameters, Adv. Math. 36 (2007), 63-76.
- B. C. Yang, On Hilbert’s integral inequality, J. Math. Anal. Appl. 220 (1998), 778-785.
- B. C. Yang, On Hardy-Hilbert’s integral inequality, J. Math. Anal. Appl. 261 (2001), 295-306.
- B. C. Yang, A multiple Hardy-Hilbert integral inequality, Chin. Ann. Math. Ser. A 24 (2003), 743-750.
- B. C. Yang, On the norm of an integral operator and applications, J. Math. Anal. Appl. 321 (2006), 182-192.
- B. C. Yang, On the norm of a Hilbert’s type linear operator and applications, J. Math. Anal. Appl. 325 (2007), 529-541.
- B. C. Yang, The Norm of Operator and Hilbert-Type Inequalities, Science Press, Beijing, 2009.
- B. C. Yang, Hilbert-Type Integral Inequalities, Bentham Science Publishers, The United Arab Emirates, 2009.
- B. C. Yang, M. Krnić, On the norm of a multi-dimensional Hilbert-type operator, Sarajevo J. Math. 7 (2011), 223-243.
- W. Y. Zhong, B. C. Yang, On a multiple Hilbert-type integral inequality with the symmetric kernel, J. Inequal. Appl. 2007 (2007), 1-17.
