References
- C. Apreutesei, Automorphismes d’ une GT -structure, C. R. Acad. Sci. Paris, Sér. A 271 (1970), 481-484.
- C. Apreutesei, Quelques classes caractéristiques et GT -structures, C. R. Acad. Sci. Paris, Sér. A 280 (1975), 41-44.
- C. Apreutesei, Sur les structures ℱ-plates dans les fibres vectoriels, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 50, no.1 (2004), 105-110.
- C. Apreutesei, On the ℱ-flat structures and associated connections, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 53, no.2 (2007), 299-314.
- C. Apreutesei, Partial trivial structures in real vector bundles, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă Mat. 63, no.2 (2017), 429-440.
- M. F. Atiyah, Vector fields on maniflods, VS Verlag für Sozial-wissenschaften, 1970.
- V. Bartik, I. Korbas, Stiefel-Whitney characteristic classes and parallelizability of Grass-mann manifolds, Rend. Circ. Math. Palermo II. Ser., Suppl. 6 (1984), 19-29.
- R. Bott, Lectures on characteristic classes and foliations, Lectures algebraic diff. topology, Lect. Notes Math. 279 (1972), 1-94.
- R. Bott, On topological obstructions to integrability, Actes Congress Intern. Math., Nice, Tome 1 (1970), 27-36.
- L. Conlon, Differentiable manifolds, Second Edition, Birkhäuser Advanced Texts, Boston, MA, 2001.
- Gh. Gheorghiev, V. Oproiu, Geometrie diferenţială, E.D.P. Bucureşti, 1977.
- D. Husemoller, Fibre bundles, McGraw-Hill Series in Higher Mathematics, New York, 1966.
- S. Kobayashi, Differential geometry of complex vector bundles (Knô memorial lectures 5), M. S. Japan, 1987.
- R. Miron, M. Anastasiei, Vector bundles and Lagrange spaces with applications to relativity, Geometry Balkan Press, Bucharest, Romania, 1997.
- V. Oproiu, Some results concerning the non-embedding codimension of Grassmann manifolds in Euclidian spaces, Rev. Roum. Math. Pures et Appl. 26 (1981), 275-286.
- N. E. Steenrod, The topology of fibre bundles, Princeton Univ. Press, 1951.
- E. Thomas, Vector fields on manifolds, Bull. Am. Mat. Soc. 75 (1969), 643-683.
- K. Trenčevski, On the linearly independent vector fields on Grassmann manifolds, Differ. Geom. Appl. 35 (2014), 56-59.
