Have a personal or library account? Click to login
Analysis of RLC multi-term fractional boundary value problems Cover
Open Access
|Sep 2025

References

  1. M. Al-Refai, Basic results on nonlinear eigenvalue problems of fractional order, Electron. J. Differ. Equ. 2012 (2012), 1-12.
  2. M. Al-Refai, K. Pal, A maximum principle for a fractional boundary value problem with convection term and applications, Math. Model. Anal. 24 (2018), 62-71.
  3. O. Brandibur, E. Kaslik, Stability properties of multi-term fractional-differential equations, Fractal Fract. 7 (2023), 117.
  4. P. Eloe, J. Neugebauer, Green’s functions for a fractional boundary value problem with three terms, Foundations 2 (2022), 885-897.
  5. J. L. Gracia, E. O’Riordan, M. Stynes, Convergence analysis of a finite difference scheme for a two-point boundary value problem with a Riemann-Liouville-Caputo fractional derivative, BIT Numer. Math. 60 (2020), 411-439.
  6. J. L. Gracia, M. Stynes, Formal consistency versus actual convergence rates of difference schemes for fractional-derivative boundary value problems, Fract. Calc. Appl. Anal. 18 (2015), 419-436.
  7. J. L. Gracia, M. Stynes, A finite difference method for an initial-boundary value problem with a Riemann-Liouville-Caputo spatial fractional derivative, J. Comput. Appl. Math. 381 (2021), 113020.
  8. J. L. Gracia, M. Stynes, A collocation method for an RLC fractional derivative two-point boundary value problem with a singular solution, Comput. Appl. Math. 43 (2024), 199.
  9. J. Graef, L. Kong, Q. Kong, M. Wang, Positive solutions of nonlocal fractional boundary value problems, Discrete Contin. Dyn. Syst. 2013 (2013), 282-290.
  10. J. Graef, L. Kong, Q. Kong, M. Wang., On a fractional boundary value problem with a perturbation term, J. Appl. Anal. Comput. 7 (2017), 57-66.
  11. A. Guezane-Lakoud, S. Bensebaa, Solvability of a fractional boundary value problem with fractional derivative condition, Arab. J. Math. 3 (2014), 39-48.
  12. A. Guezane-Lakoud, R. Khaldi, D. F. M. Torres, On a fractional oscillator equation with natural boundary conditions, Prog. Fract. Differ. Appl. 3 (2017), 1-7.
  13. B. Ibrahim, Q.-X. Dong, Z. Fan, Existence for boundary value problems of two-term Caputo fractional differential equations, J. Nonlinear Sci. Appl. 10 (2017), 511-520.
  14. L. Jia, H. Chen, V. Ervin, Existence and regularity of solutions to 1-D fractional order diffusion equations, preprint, arXiv: 1808.10555.
  15. R. Khaldi, A. Guezane-Lakoud, Upper and lower solutions method for higher order boundary value problems, Prog. Fract. Differ. Appl. 3 (2017), 53-57.
  16. R. Khaldi, A. Guezane-Lakoud, On generalized nonlinear Euler-Bernoulli beam type equations, Acta Univ. Sapientiae, Math. 10 (2018), 90-100.
  17. A. Kilbas, H. Srivastava, J.Trujillo, Theory and applications of fractional differential equations, Elsevier Amsterdam, 2006.
  18. X. Meng, M. Stynes, The Green’s function and a maximum principle for a Caputo two-point boundary value problem with a convection term, J. Math. Anal. Appl. 461 (2018), 198-218.
  19. J. Rong, C. Bai, Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions, Adv. Difference Equ. 2015 (2015), 82.
  20. B. Sambandham, A. Vatsala, Basic results for sequential Caputo fractional differential equations, Mathematics 3 (2015), 76-91.
  21. S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives, Taylor & Francis, 1993.
  22. A. Souahi, A. Guezane-Lakoud, A. Hitta, Positive solutions for higher-order nonlinear fractional differential equations, Vietnam J. Math. 45 (2017), 441-450.
  23. S. Stanek, Periodic problem for two-term fractional differential equations, Fract. Calc. Appl. Anal. 20 (2017), 662-678.
  24. M. Stynes, J. L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal. 35 (2015), 698-721.
  25. A. Vatsala, G. Pageni, V. Vijesh, Analysis of sequential Caputo fractional differential equations versus non-sequential Caputo fractional differential equations with applications, Foundations 2 (2022), 1129-1142.
  26. O. K. Wanassi, F. Toumi, Existence results for perturbed boundary value problem with fractional order, Ric. Mat. 73 (2024), 1367-1383.
  27. H. Wang, D. Yang, Wellposedness of Neumann boundary-value problems of space-fractional differential equations, Fract. Calc. Appl. Anal. 20 (2017), 1356-1381.
  28. Y. Wei, Z. Bai, Solvability of some fractional boundary value problems with a convection term, Discrete Dyn. Nat. Soc. 2019 (2019), 1230502.
  29. C. Xie, S. Fang, Finite difference scheme for timespace fractional diffusion equation with fractional boundary conditions, Math. Methods Appl. Sci. 43 (2020), 3473-3487.
DOI: https://doi.org/10.2478/awutm-2025-0011 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 157 - 173
Submitted on: Sep 7, 2024
Accepted on: Aug 23, 2025
Published on: Sep 4, 2025
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Ahlem Adoui, Assia Guezane-Lakoud, Rabah Khaldi, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.