References
- K. G. Bartley, J. L. Walker, Algebraic geometric codes over rings, Advances in Algebraic Geometry Codes, Series on Coding Theory and Cryptology, Vol. 5, World Scientific Publishing Co. Pte. Ltd., 2008.
- R. Blache, L-functions of exponential sums on curves over rings, Finite Fields Appl. 15 (2009), 345-359.
- R. Cramer, M. Rambaud, C. Xing, Asymptotically-good arithmetic secret sharing over ℤ/plℤ with strong multiplication and its applications to efficient MPC, Cryptology ePrint Archive, Paper 2019/832, 2019.
- D. Eisenbud, Commutative Algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics, Springer, 1995.
- A. Gathmann, Algebraic geometry, Class notes, TU Kaiserslautern, 2014.
- V. D. Goppa, Codes associated with divisors, Probl. Peredachi Inf. 13 (1977), 33-39, English translation in Probl. Inf. Transm. 13 (1977), 22-27.
- A. Grothendieck,Éléments de géométrie algébrique: I. Le langage des schémas, Publications Mathématiques de l’IHÉS Vol. 4, 1960, 5-228.
- R. Hartshorne, Residues and duality, Springer-Verlag, New York, 1966.
- R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.
- A. J. de Jong et al, Stacks Project, Version 2dce121a, compiled on April 12, 2021, https://stacks.math.columbia.edu.
- Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press 2002.
- R. Pellikaan, B. - Z. Shen, G. J. M. Van Wee, Which linear codes are algebraic-geometric?, IEEE Trans. Inf. Theory 37 (1991), 583-602.
- C. Peskine, Introduction algébrique à la géométrie projective, Analyse complexe et géométrie, Université Paris 6, 2007.
- M. A. Tsfasman, S. G. Vlăduţ, Th. Zink, Modular curves, Shimura curves, and Goppa codes, better than the Varshamov-Gilbert bound, Math. Nachr. ℤ (1982), 21-28.
- J. F. Voloch, J. L. Walker, Lee weights of ℤ/4ℤ-codes from elliptic curves, Codes, Curves, and Signals: Common Threads in Communications (1998), 53-62.
- J. F. Voloch, J. L. Walker, Euclidean weights of codes from elliptic curves over rings, Trans. Am. Math. Soc. 352 (11) (2000), 5063-5076.
- J. F. Voloch, J. L. Walker, Codes over rings from curves of higher genus, IEEE Trans. Inf. Theory 45 (1999), 1768-1776.
- J. L. Walker, Algebraic geometric codes over rings, PhD thesis, University of Illinois at Urbana-Champaign, 1996.
- J. L. Walker, The Nordstrom-Robinson code is algebraic geometric, IEEE Trans. Inf. Theory 43 (5) (1997), 1588-1593.
- J. L. Walker, Algebraic geometric codes over rings, J. Pure Appl. Algebra 144 (1) (1999), 91-110.
