Have a personal or library account? Click to login
Multiple time scales method for a two dimensional system with distributed delays Cover

Multiple time scales method for a two dimensional system with distributed delays

Open Access
|Jul 2025

References

  1. M. Andersen, F. Vinther, J. T. Ottesen, Mathematical modeling of the hypothalamic-pituitary-adrenal gland (HPA) axis, including hippocampal mechanisms, Math. Biosci. 246 (1) (2013), 122-138.
  2. B. J. Carroll, F. Cassidy, D. Naftolowitz, N. E. Tatham, W. H. Wilson, A. Iranmanesh, P. Y. Liu, J. D. Veldhuis, Pathophysiology of hypercortisolism in depression, Acta Psychiatr. Scand. 115 (s433) (2007), 90-103.
  3. S. L. Das, A. Chatterjee, Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations, Nonlinear Dyn. 30 (2002), 323-335.
  4. S. Gupta, E. Aslakson, B. M. Gurbaxani, S. D. Vernon, Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability, Theor. Biol. Med. Model. 4 (1) (2007), 8.
  5. E. Kaslik, E. - A. Kokovics, Stability and bifurcations in scalar differential equations with a general distributed delay, Appl. Math. Comput. 454 (2023), 128100.
  6. E. Kaslik, M. R. Matei, M. Neamţu, Dynamics of a pituitaryadrenal model with distributed time delays, Commun. Nonlinear Sci. Numer. Simul. 140 (2025), 108363.
  7. E. Kaslik, M. Neamţu, Stability and Hopf bifurcation analysis for the hypothalamic-pituitary-adrenal axis model with memory, Math. Med. Biol. 35 (1) (2018), 49-78.
  8. A. H. Nayfeh, Order reduction of retarded nonlinear systems - the method of multiple scales versus center-manifold reduction, Nonlinear Dyn. 51 (4) (2008), 483-500.
  9. A. H. Nayfeh, The method of normal forms, John Wiley & Sons, 2011.
  10. B. Niu, Y. Guo, W. Jiang, An approach to normal forms of Kuramoto model with distributed delays and the effect of minimal delay, Phys. Lett. A 379 (36) (2015), 2018-2024.
  11. Y. Song, Y. Han, Y. Peng, Stability and Hopf bifurcation in a unidirectional ring of n neurons with distributed delays, Neurocomputing 121 (2013), 442-452.
  12. J. Yu, M. Peng, Stability and bifurcation analysis for the Kaldor-Kalecki model with a discrete delay and a distributed delay, Physica A 460 (2016), 66-75.
  13. Y. Yuan, J. Bélair, Stability and Hopf bifurcation analysis for functional differential equation with distributed delay, SIAM J. Appl. Dyn. Syst. 10 (2) (2011), 551-581.
DOI: https://doi.org/10.2478/awutm-2025-0006 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 61 - 74
Submitted on: Apr 1, 2025
Accepted on: Jun 16, 2025
Published on: Jul 5, 2025
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Maria Roxana Matei, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.