Have a personal or library account? Click to login
A note on Deaconescu’s conjecture Cover

References

  1. P. Burcsi, S. Czirbusz, G. Farkas, Computational investigation of Lehmer’s totient problem, Ann. Univ. Sci. Budapest. Sect. Comput. 35 (2011), 43-49.
  2. D. Burek, B. Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory 15, no. 7 (2019), 1463-1468.
  3. G. L. Cohen, P. Hagis, On the number of prime factors of n if ϕ(n)|(n − 1), Nieuw. Arch. Wisk. (3) 28, no. 2 (1980), 177-185.
  4. M. Deaconescu, Adding units mod n, Elem. Math. 55, no. 3 (2000), 123-127.
  5. E. Hasanalizade, On a conjecture of Deaconescu, Integers 22 (2022), #A99.
  6. S. H. Hernandez, F. Luca, A note on Deaconescu’s result concerning Lehmer’s problem, Integers 8 (2008), #A12.
  7. D. H. Lehmer, On Euler’s totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.
  8. P. Nielsen, Odd perfect numbers, Diophantine equations, and upper bounds, Math. Comp. 84 (2015), 2549-2567.
  9. C. Pomerance, On composite n for which ϕ(n)|n − 1, II, Pacific J. Math. 69, no. 1 (1977), 177-186.
DOI: https://doi.org/10.2478/awutm-2025-0005 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 55 - 60
Submitted on: Apr 2, 2025
Accepted on: Jun 16, 2025
Published on: Jun 25, 2025
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Sagar Mandal, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.