Have a personal or library account? Click to login
From Pikovsky-Rabinovich Dynamical System to Lagrange-Hamilton Geometrical Objects Cover

From Pikovsky-Rabinovich Dynamical System to Lagrange-Hamilton Geometrical Objects

By: Mircea Neagu and  Elena Ovsiyuk  
Open Access
|Nov 2024

References

  1. V. Balan, M. Neagu, Jet Single-Time Lagrange Geometry and Its Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2011.
  2. C. G. Böhmer, T. Harko, S. V. Sabău, Jacobi stability analysis of dynamical systems - applications in gravitation and cosmology, Adv. Theor. Math. Phys. 16 (2012), 1145–1196.
  3. I. Bucătaru, R. Miron, Finsler-Lagrange Geometry. Applications to Dynamical Systems, Romanian Academy Eds, Bucharest, 2007.
  4. O. Chiş, M. Puta, The dynamics of Rabinovich system, Differential Geometry - Dynamical Systems 10 (2008), 91–98.
  5. R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1994.
  6. R. Miron, D. Hrimiuc, H. Shimada, S. V. Sabău, The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
  7. M. Neagu, A. Oană, Dual Jet Geometrization for Time-Dependent Hamiltonians and Applications, Synthesis Lectures on Mathematics & Statistics, Springer, Cham, Switzerland, 2022.
  8. M. Neagu, E. Ovsiyuk, A note on the Jacobi stability of dynamical systems via Lagrange geometry and KCC theory, Proc. of the XVI-th Internat. Virtual Res.-to-Pract. Conf. Innov. Techn. for Teach. Phys., Math. and Vocat. Discipl. (2024), Mozyr State Pedagogical University named after I.P. Shamyakin, Mozyr, Belarus, pp. 229–231.
  9. M. Neagu, C. Udrişte, From PDE systems and metrics to multi-time field theories and geometric dynamics, Seminarul de Mecanică 79 (2001), 1–33.
  10. A. S. Pikovsky, M. I. Rabinovich, Stochastic oscillations in dissipative systems, Math. Phys. Rev. 2 (1981), 8–24.
  11. X. Tong, Y. Liu, M. Zhang, H. Xu, Z. Wang, An image encryption scheme based on hyperchaotic Rabinovich and exponential chaos maps, Entropy 17 (2015), 181–196.
  12. C. Udrişte, Geometric Dynamics, Kluwer Academic Publishers, Dordrecht, 2000.
DOI: https://doi.org/10.2478/awutm-2024-0009 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 123 - 129
Submitted on: Sep 1, 2024
Accepted on: Nov 11, 2024
Published on: Nov 21, 2024
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Mircea Neagu, Elena Ovsiyuk, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.