References
- V. Balan, M. Neagu, Jet Single-Time Lagrange Geometry and Its Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2011.
- C. G. Böhmer, T. Harko, S. V. Sabău, Jacobi stability analysis of dynamical systems - applications in gravitation and cosmology, Adv. Theor. Math. Phys. 16 (2012), 1145–1196.
- I. Bucătaru, R. Miron, Finsler-Lagrange Geometry. Applications to Dynamical Systems, Romanian Academy Eds, Bucharest, 2007.
- O. Chiş, M. Puta, The dynamics of Rabinovich system, Differential Geometry - Dynamical Systems 10 (2008), 91–98.
- R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1994.
- R. Miron, D. Hrimiuc, H. Shimada, S. V. Sabău, The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- M. Neagu, A. Oană, Dual Jet Geometrization for Time-Dependent Hamiltonians and Applications, Synthesis Lectures on Mathematics & Statistics, Springer, Cham, Switzerland, 2022.
- M. Neagu, E. Ovsiyuk, A note on the Jacobi stability of dynamical systems via Lagrange geometry and KCC theory, Proc. of the XVI-th Internat. Virtual Res.-to-Pract. Conf. Innov. Techn. for Teach. Phys., Math. and Vocat. Discipl. (2024), Mozyr State Pedagogical University named after I.P. Shamyakin, Mozyr, Belarus, pp. 229–231.
- M. Neagu, C. Udrişte, From PDE systems and metrics to multi-time field theories and geometric dynamics, Seminarul de Mecanică 79 (2001), 1–33.
- A. S. Pikovsky, M. I. Rabinovich, Stochastic oscillations in dissipative systems, Math. Phys. Rev. 2 (1981), 8–24.
- X. Tong, Y. Liu, M. Zhang, H. Xu, Z. Wang, An image encryption scheme based on hyperchaotic Rabinovich and exponential chaos maps, Entropy 17 (2015), 181–196.
- C. Udrişte, Geometric Dynamics, Kluwer Academic Publishers, Dordrecht, 2000.
