Have a personal or library account? Click to login
Copson-type Inequalities via the k-Hadamard Operator Cover

References

  1. B. Benaissa, On some Copson-type integral inequality, Korean. J. Math. 29 (3) (2021), 467-472.
  2. E. T. Copson, Note on series of positive terms, J. Lond. Math. Soc. 3 (1928), 49-51.
  3. E. T. Copson, Some Integral Inequalities, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 75 (2) (1976), 157-164.
  4. A. A. El-Deeb, S. D. Makharesh, J. Awrejcewicz, R. P. Agarwal, Dynamic Hardy-Copson Type Inequalities via (g, a)-Nabla Conformable Derivatives on Time Scales, Symmetry 14 (9) (2022), 1847.
  5. P. Gao, H. Zhao, On Copson’s inequalities for 0 < p < 1, J. Inequal. Appl. Volume 2020 (2020), 72.
  6. G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd edn. Cambridge University Press, Cambridge, 1952.
  7. E. Hewitt, K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, second printing corrected, Springer-Verlag, Berlin, 1969.
  8. Z. Kayar, B. Kaymakçalan, Hardy-Copson type inequalities for nabla time scale calculus, Turk. J. Math. 45 (2021), 1040-1064.
  9. Z. Kayar, B. Kaymakçalan, Some Extended Nabla and Delta Hardy-Copson Type Inequalities with Applications in Oscillation Theory, Bull. Iran. Math. Soc. 48 (2022), 2407-2439.
  10. Z. Kayar, B. Kaymakçalan, Diamond alpha Hardy-Copson type dynamic inequalities, Hacettepe J. Math. Stat. 51 (2022), 48-73.
  11. C. Niculescu, L. E. Persson, Convex functions and their applications, Vol. 23. New York: Springer, 2006.
  12. S. Saker, M. R. Kenawy, Copson and Converses Copson Type Inequalities Via Conformable Calculus, Progr. Fract. Di er. Appl. 5 (3) (2019), 243-254.
  13. S. H. Saker, D. O’Regan, R. P. Agarwal, Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales, Math. Nachr. 287 (2014), 686-698.
  14. S. H. Saker, D. O’Regan, R. P. Agarwal, Dynamic inequalities of Hardy and Copson type on time scales, Analysis 34 (4) (2014), 391-402.
  15. M. Zakarya, M. Altanji, G. AlNemer, H. A. Abd El-Hamid, C. Cesarano, H. M. Rezk, Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales, Symmetry 13 (4) (2021), 542.
  16. C.-J. Zhao, W.-S. Cheung, On Hardy-Pachpatte-Copson’s Inequalities., The Scientific World Journal Volume 2014 (2014), 607347.
DOI: https://doi.org/10.2478/awutm-2024-0005 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 73 - 84
Submitted on: Aug 14, 2023
Accepted on: Jun 4, 2024
Published on: Jun 11, 2024
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Bouharket Benaissa, Noureddine Azzouz, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.