Have a personal or library account? Click to login
Decorated Nonlinear Flags, Pointed Vortex Loops and the Dihedral Group Cover
By: Ioana Ciuclea  
Open Access
|Jun 2024

References

  1. V. Arnold, Sur la g´eom´etrie diff´erentielle des groupes de Lie de dimension infinie et ses applications ‘a l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier Grenoble 16 (1966), 319–361.
  2. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 2012.
  3. M. Bauer, M. Bruveris, P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vision 50 (2014), 60–97.
  4. I. Ciuclea, Nonlinear Grassmannians and their generalizations, doctoral dissertation, West University of Timisoara, 2024.
  5. I. Ciuclea, A. B. Tumpach, C. Vizman, Shape spaces of nonlinear flags, Proc. GSI 2023: Geometric Science of Information, Lecture Notes in Computer Science, ed. F. Nielsen and F. Barbaresco (2023), 44–50.
  6. I. Ciuclea, C. Vizman, Pointed vortex loops in ideal 2D fluids, J. Phys. A: Math. Theor. 56, 245201 (2023) (15pp).
  7. K. Conrad, Dihedral Groups II., Expository Papers, pusblished online at https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf.
  8. F. Gay-Balmaz, C. Vizman, Isotropic submanifolds and coadjoint orbits of the Hamiltonian group, J. Symp. Geom. 17 (3) (2019), 663–702.
  9. F. Gay-Balmaz, C. Vizman, Coadjoint orbits of vortex sheets in ideal fluids, J. Geom. Phys. 197 (2024), Paper No. 105096, 13 pp.
  10. G. A. Goldin, R. Menikoff, D. H. Sharp, Diffeomorphism groups and quantized vortex filaments, Phys. Rev. Lett. 58 (1987), 2162–2164.
  11. S. Haller, C. Vizman, Non-linear Grassmannians as coadjoint orbits, Math. Ann. 329 (2004), 771–785.
  12. S. Haller, C. Vizman, Non-linear flag manifolds as coadjoint orbits, Ann. Global Anal. Geom. 58 (2020), 385–413.
  13. S. Haller, C. Vizman, A dual pair for the contact group. Math. Z. 301 (2022), 2937–2973.
  14. S. Haller, C. Vizman, Weighted non-linear flag manifolds as coadjoint orbits, Canadian Journal of Mathematics, published online (2023), 1-31.
  15. I. H. Jermyn, S. Kurtek, H. Laga, A. Srivastava, Elastic shape analysis of three-dimensional objects. Synth. Lect. Comput. Vision 12 (2017), 1–185.
  16. B. Khesin, Symplectic structures and dynamics on vortex membranes, Moscow Math. J. 12 (2013), 413–434.
  17. B. Lee, Geometric structures on spaces of weighted submanifolds, SIGMA 5 099 (2009), 46 pages.
  18. J. M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218, Springer, 2013.
  19. J. E. Marsden, A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D 7 (1983), 305–323.
  20. P. W. Michor, Manifolds of mappings and shapes. In The legacy of Bernhard Riemann after one hundred and fifty years. Vol. II, 459–486, Adv. Lect. Math. 35.2, Int. Press, Somerville, MA, 2016.
  21. P. W. Michor, Manifolds of mappings for continuum mechanics. In: Segev, R., Epstein, M. (eds.) Geometric Continuum Mechanics. Advances in Mechanics and Mathematics vol. 42, pp. 3–75, Birkh¨auser, Basel, 2020.
  22. J. Strait, S. Kurtek, E. Bartha, S. N. MacEachern, Landmark-constrained elastic shape analysis of planar curves. J. Amer. Statist. Assoc. 112 (2017), 521–533.
  23. C. Vizman, Induced differential forms on manifolds of functions, Archivum Mathematicum 47 (2011), 201–215.
  24. A. Weinstein, Connections of Berry and Hannay type for moving Lagrangian submanifolds, Adv. Math. 82 (1990), 133–159.
DOI: https://doi.org/10.2478/awutm-2024-0004 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 56 - 72
Submitted on: May 17, 2024
Accepted on: May 31, 2024
Published on: Jun 7, 2024
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Ioana Ciuclea, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.