Have a personal or library account? Click to login
A Study of Computational Genome Assembly by Graph Theory Cover
By: Bijan Sarkar  
Open Access
|Feb 2024

References

  1. A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev, P. A. Pevzner, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, Journal of Computational Biology 19 (5) (2012), 455-477.
  2. K. Behizadi, N. Jafarzadeh, A. Iranmanesh, Graph theoretical strategies in de novo assembly, IEEE Access 10 (2022), 9328-9339.
  3. J. Blazewicz, M. Kasprzak, M. Kierzynka, W. Frohmberg, A. Swiercz, P. Wojciechowski, P. Zurkowski, Graph algorithms for DNA sequencing–origins, current models and the future, European Journal of Operational Research 264 (3) (2018), 799-812.
  4. P. E. Compeau, P. A. Pevzner, G. Tesler, How to apply de Bruijn graphs to genome assembly, Nature Biotechnology 29 (11) (2011), 987-991.
  5. P. Compeau, P. A. Pevzner, Bioinformatics Algorithms: An Active Learning Approach, Active Learning Publishers, 2015.
  6. S. Gladman, An introduction to genome assembly (galaxy training materials), 18-10 (2022), URL: https://training.galaxyproject.org/training-material/topics/assembly/tutorials/general-introduction/tutorial.html, Accessed: 2022-10-21.
  7. R. M. Idury, M. S. Waterman, A new algorithm for DNA sequence assembly, Journal of Computational Biology 2 (2) (1995), 291-306.
  8. D. Li, C.M. Liu, R. Luo, K. Sadakane, T. W. Lam, MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph, Bioinformatics 31 (10) (2015), 1674-1676.
  9. R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu and others, SOAPdenovo2: an empirically improved memory-e cient short-read de novo assembler, Gigascience 1 (1) (2012), 2047-217X.
  10. Iu. P. Lysov, V. L. Florent’ev, A. A. Khorlin, K. R. Khrapko, V. V. Shik, Determination of the nucleotide sequence of DNA using hybridization with oligonucleotides. A new method, Dokl Akad Nauk SSSR 303 (6) (1988), 1508-1511.
  11. P. Medvedev, S. Pham, M. Chaisson, G. Tesler, P. A. Pevzner, Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers, Journal of Computational Biology 18 (11) (2011), 1625-1634.
  12. E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan, S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington, E. L. Anson, R. A. Bolanos, H. H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M. Beasley, R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams, J. C. Venter, A whole-genome assembly of drosophila, Science 287 (5461) (2000), 2196-2204.
  13. E. W. Myers Jr, A history of DNA sequence assembly, IT - Information Technology 58 (3) (2016), 126-132, URL: https://doi.org/10.1515/itit-2015-0047, Accessed: 2022-10-17.
  14. Y. Peng, H. Leung, S. M. Yiu, F. Y. Chin, IDBA–a practical iterative de Bruijn graph de novo assembler, Annual International Conference on Research in Computational Molecular Biology, Springer, 2010, 426-440.
  15. P. A. Pevzner, 1-Tuple DNA sequencing: computer analysis, Journal of Biomolecular Structure and Dynamics 7 (1) (1989), 63-73.
  16. P. A. Pevzner, H. Tang, M. S. Waterman, An Eulerian path approach to DNA fragment assembly, Proceedings of the National Academy of Sciences 98 (17) (2001), 9748-9753.
  17. J. E. Quiroz-Ibarra, G. M. Mallén-Fullerton, G. Fernández-Anaya, DNA paired fragment assembly using graph theory, Algorithms 10 (2) (2017), 36.
  18. M. Rocha, P. G. Ferreira, Bioinformatics Algorithms: Design and Implementation in Python, Academic Press, 2018.
  19. F. Sanger, S. Nicklen, A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proceedings of the National Academy of Sciences 74 (1977), 5463-5467.
  20. F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, G. B. Petersen, Nucleotide sequence of bacteriophage DNA, Journal of Molecular Biology 162 (4) (1982), 729-773.
  21. J. I. Sohn, J. W. Nam, The present and future of de novo whole-genome assembly, Briefings in Bioinformatics 19 (1) (2018), 23-40.
  22. E. Southern, Analyzing polynucleotide sequences, International patent application PCT/GB89/00460 (1988).
  23. B. Wajid, E. Serpedin, Review of general algorithmic features for genome assemblers for next generation sequencers, Genomics, Proteomics and Bioinformatics 10 (2) (2012), 58-73.
  24. D. R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Research 18 (5) (2008), 821-829.
  25. W. Zhang, J. Chen, Y. Yang, Y. Tang, J. Shang, B. Shen, A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies, PloS One 6 (3) (2011), e17915.
  26. Galaxy, URL: https://usegalaxy.org/, Accessed: 2022-10-21.
  27. Zenodo, URL: https://zenodo.org/record/582600#.Y1NvKUpBxN5, Accessed: 2022-10-21.
  28. Assembly using Spades, URL: https://www.melbournebioinformatics.org.au/tutorials/tutorials/assembly/spades/, Accessed: 2022-10-21.
DOI: https://doi.org/10.2478/awutm-2024-0001 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 1 - 24
Submitted on: Feb 7, 2023
Accepted on: Feb 13, 2024
Published on: Feb 24, 2024
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Bijan Sarkar, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.