References
- D. Affane, M. Aissous, M. F. Yarou, Existence results for sweeping process with almost convex perturbation, Bull. Math. Soc. Sci. Math. Roumanie 61 (2018), 119–134.
- D. Affane, M. Aissous, M. F. Yarou, Almost mixed semi-continuous perturbation of Moreau’s sweeping process, Evol. Equ. Control Theory 9 (2020), 27–38.
- D. Affane, L. Boulkemh, Topological properties for a perturbed first order sweeping process, Acta Univ. Sapientiae Math. 13 (2021), 1–22.
- D. Affane, L. Boulkemh, First order sweeping process with subsmooth sets, Miskolc Math. Notes 23 (2022), 13–27.
- D. Affane, M. F. Yarou, Unbounded perturbation for a class of variational inequalities, Discuss. Math., Di er. Incl. Control Optim. 37 (2017), 83–99.
- D. Affane, M. F. Yarou, Second-order perturbed state-dependent sweeping process with subsmooth sets, Comput. Math. Appl. (2020), 147–169.
- D. Affane, M. F. Yarou, Perturbed first-order state dependent Moreaus sweeping process, Int. J. Nonlinear Anal. Appl. 12 (2021), 605–615.
- H. Attouch, R. J. B. Wets, Quantitative stability of variational systems. I. The epigraphical distance, Trans. Am. Math. Soc. 328 (1991), 695–729.
- S. Boudada, M. F. Yarou, Sweeping process with right uniformly lower semicontinuous mappings, Positivity 24 (2020), 207–228.
- M. Bounkhel, L. Thibault, Nonconvex sweeping process and prox regularity in Hilbert space, J. Nonlinear Convex Anal. 6 (2005), 359–3374.
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam, 1973.
- C. Castaing, A. G. Ibrahim, M. F. Yarou, Existence problems in second order evolution inclusions: discretization and variational approach, Taiwanese J. Math. 12 (06) (2008), 1435–1477.
- C. Castaing, A. G. Ibrahim, M. F. Yarou, Some contributions to nonconvex sweeping process, J. Nonlinear Convex Anal. 10 (2009), 1–20.
- P. V. Chuong, A density theorem with an application in relaxation of nonconvex-valued differential equations, J. Math. Anal. Appl. 124 (1987), 1–14.
- F. Clarke, Y. Ledyaev, R. Stern, P. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.
- G. Colombo, R. Henrion, N. D. Hoang, B. Sh. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets, J. Differ. Equations 260 (2016), 3397–3447.
- J. F. Edmond, L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program. Ser. B. 104 (2005), 347–373.
- D. Goeleven, Complementarity and Variational Inequalities in Electronics, Mathematical Analysis and its Applications, Academic Press, London, 2017.
- F. Hiai, H. Umegaki, Integrals conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149–182.
- A. Ioffe, Existence and relaxation theorems for unbounded differential inclusions, J. Convex Anal. 13 (2006), 353–362.
- A. Jourani, E. Vilches, Positively α-far sets and existence results for generalized perturbed sweeping processes, J. Convex Anal. 23 (2016) 775–821.
- M. Kunze, M. D. P. Monteiro Marques, Existence of solutions for degenerate sweeping processes, J. Convex Anal. 4 (1997), 165–176.
- M. Kunze, M. D. P. Monteiro Marques, An introduction to Moreau’s sweeping process, in B. Brogliato, (ed.) Impacts in Mechanical Systems. Analysis and Modelling, Springer, Berlin, 2000, 1–60.
- J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equations 26 (1977), 347–374.
- R. T. Rockafellar, R. J. B. Wets, Variational analysis, Springer Science and Business Media, 2009.
- S. A. Timoshin, A. A. Tolstonogov, Existence and relaxation of BV solutions for a sweeping process with a nonconvex-valued perturbation, J. Convex Anal. 27 (2020), 645–672.
- A. A. Tolstonogov, D. A. Tolstonogov, Lp-Continuous extreme selectors of multifunctions with decomposable values. Relaxation theorems, Set-Valued Anal. 87 (1996), 237–269.
- A. A. Tolstonogov, Relaxation in non-convex control problems described by first-order evolution equations, Sb. Math. 190 (1999), 1689–1714.
- A. A. Tolstonogov, Differential inclusions with unbounded right-hand side: existence and relaxation theorems, Proc. Steklov Inst. Math. 291 (2015), 190–207.
- A. A. Tolstonogov, Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation, J. Math. Anal. Appl. 447 (2017), 269–288.
- A. A. Tolstonogov, Existence and relaxation of solutions to differential inclusion with unbounded right-Hand side in a Banach space, Siberian Math. J. 58 (2017), 727–742.
- S. Zeng, E. Vilches, Well-posedness of history/state-dependent implicit sweeping processes, J. Optim. Theory Appl. 186 (2020), 960–984.
- Q. J. Zhu, On the solution set of differential inclusions in Banach space, J. Differ. Equations 93 (1991), 213–237.
