Have a personal or library account? Click to login

Non-convex perturbation to evolution problems involving Moreau’s sweeping process

Open Access
|Dec 2023

References

  1. D. Affane, M. Aissous, M. F. Yarou, Existence results for sweeping process with almost convex perturbation, Bull. Math. Soc. Sci. Math. Roumanie 61 (2018), 119–134.
  2. D. Affane, M. Aissous, M. F. Yarou, Almost mixed semi-continuous perturbation of Moreau’s sweeping process, Evol. Equ. Control Theory 9 (2020), 27–38.
  3. D. Affane, L. Boulkemh, Topological properties for a perturbed first order sweeping process, Acta Univ. Sapientiae Math. 13 (2021), 1–22.
  4. D. Affane, L. Boulkemh, First order sweeping process with subsmooth sets, Miskolc Math. Notes 23 (2022), 13–27.
  5. D. Affane, M. F. Yarou, Unbounded perturbation for a class of variational inequalities, Discuss. Math., Di er. Incl. Control Optim. 37 (2017), 83–99.
  6. D. Affane, M. F. Yarou, Second-order perturbed state-dependent sweeping process with subsmooth sets, Comput. Math. Appl. (2020), 147–169.
  7. D. Affane, M. F. Yarou, Perturbed first-order state dependent Moreaus sweeping process, Int. J. Nonlinear Anal. Appl. 12 (2021), 605–615.
  8. H. Attouch, R. J. B. Wets, Quantitative stability of variational systems. I. The epigraphical distance, Trans. Am. Math. Soc. 328 (1991), 695–729.
  9. S. Boudada, M. F. Yarou, Sweeping process with right uniformly lower semicontinuous mappings, Positivity 24 (2020), 207–228.
  10. M. Bounkhel, L. Thibault, Nonconvex sweeping process and prox regularity in Hilbert space, J. Nonlinear Convex Anal. 6 (2005), 359–3374.
  11. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam, 1973.
  12. C. Castaing, A. G. Ibrahim, M. F. Yarou, Existence problems in second order evolution inclusions: discretization and variational approach, Taiwanese J. Math. 12 (06) (2008), 1435–1477.
  13. C. Castaing, A. G. Ibrahim, M. F. Yarou, Some contributions to nonconvex sweeping process, J. Nonlinear Convex Anal. 10 (2009), 1–20.
  14. P. V. Chuong, A density theorem with an application in relaxation of nonconvex-valued differential equations, J. Math. Anal. Appl. 124 (1987), 1–14.
  15. F. Clarke, Y. Ledyaev, R. Stern, P. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.
  16. G. Colombo, R. Henrion, N. D. Hoang, B. Sh. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets, J. Differ. Equations 260 (2016), 3397–3447.
  17. J. F. Edmond, L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program. Ser. B. 104 (2005), 347–373.
  18. D. Goeleven, Complementarity and Variational Inequalities in Electronics, Mathematical Analysis and its Applications, Academic Press, London, 2017.
  19. F. Hiai, H. Umegaki, Integrals conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149–182.
  20. A. Ioffe, Existence and relaxation theorems for unbounded differential inclusions, J. Convex Anal. 13 (2006), 353–362.
  21. A. Jourani, E. Vilches, Positively α-far sets and existence results for generalized perturbed sweeping processes, J. Convex Anal. 23 (2016) 775–821.
  22. M. Kunze, M. D. P. Monteiro Marques, Existence of solutions for degenerate sweeping processes, J. Convex Anal. 4 (1997), 165–176.
  23. M. Kunze, M. D. P. Monteiro Marques, An introduction to Moreau’s sweeping process, in B. Brogliato, (ed.) Impacts in Mechanical Systems. Analysis and Modelling, Springer, Berlin, 2000, 1–60.
  24. J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equations 26 (1977), 347–374.
  25. R. T. Rockafellar, R. J. B. Wets, Variational analysis, Springer Science and Business Media, 2009.
  26. S. A. Timoshin, A. A. Tolstonogov, Existence and relaxation of BV solutions for a sweeping process with a nonconvex-valued perturbation, J. Convex Anal. 27 (2020), 645–672.
  27. A. A. Tolstonogov, D. A. Tolstonogov, Lp-Continuous extreme selectors of multifunctions with decomposable values. Relaxation theorems, Set-Valued Anal. 87 (1996), 237–269.
  28. A. A. Tolstonogov, Relaxation in non-convex control problems described by first-order evolution equations, Sb. Math. 190 (1999), 1689–1714.
  29. A. A. Tolstonogov, Differential inclusions with unbounded right-hand side: existence and relaxation theorems, Proc. Steklov Inst. Math. 291 (2015), 190–207.
  30. A. A. Tolstonogov, Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation, J. Math. Anal. Appl. 447 (2017), 269–288.
  31. A. A. Tolstonogov, Existence and relaxation of solutions to differential inclusion with unbounded right-Hand side in a Banach space, Siberian Math. J. 58 (2017), 727–742.
  32. S. Zeng, E. Vilches, Well-posedness of history/state-dependent implicit sweeping processes, J. Optim. Theory Appl. 186 (2020), 960–984.
  33. Q. J. Zhu, On the solution set of differential inclusions in Banach space, J. Differ. Equations 93 (1991), 213–237.
DOI: https://doi.org/10.2478/awutm-2023-0012 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 151 - 175
Published on: Dec 1, 2023
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Nouha Boudjerida, Doria Affane, Mustapha Fateh Yarou, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.