Have a personal or library account? Click to login

Estimate of third Hankel determinant for a subfamily of analytic functions

Open Access
|Jul 2023

References

  1. J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math 17 (1) (1915), 12–22.
  2. S. Altinkaya, S. Yalçin, Third Hankel determinant for Bazilevic functions, Adv. Math. 5 (2016), 91–96.
  3. M. Arif, K. I. Noor, M. Raza, Hankel determinant problem of a subclass of analytic functions, J. Inequal. Appl. 2 (2012), 22.
  4. K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2010), 1–7.
  5. D. Bansal, S. Maharana, J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52 (2015), 1139–1148.
  6. D. Breaz, A. Cätaş, L. -I. Cotîrla, On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential function, An. Şt. Univ. “Ovidius” Constanţa Ser. Mat. 30 (2022), 75–89.
  7. N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc. 45 (2019), 213–232.
  8. P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer, 1983.
  9. J. Janteng, S. Abdulhalim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1 (2007), 619-625.
  10. D. V. Krishna, B. Venkateswarlu, T. RamReddy, Third Hankel determinant for bounded turning functions of order alpha, J. Niger. Math. Soc. 34 (2015), 121–127.
  11. R. J. Libera, E. J. Zlotkiewicz, Early coefficient of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (2) (1982), 225–230.
  12. R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (2) (1983), 251–257.
  13. M. S. Liu, J. F. Xu, M. Yang, Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal. (2014), 603180.
  14. W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Z. Li, F. Ren, L. Yang, S. Zhang (eds.), Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Int. Press, Cambridge, 1994, 157–169.
  15. S. Mahmood, H. M. Srivastava, S. N. Malik, Some subclasses of uniformly univalent functions with respect to symmetric points, Symmetry 11 (2019), 287.
  16. S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, Khan, I. B. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry 11 (2019), 347.
  17. S. N. Malik, M. Raza, J. Sokol, S. Zainab, Analytic functions associated with cardioid domain, Turk J Math 44 (2020), 1127–1136.
  18. S. S. Miller, P. T. Mocanu, Differential Subordinations Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker, New York, 2000.
  19. A. K. Mishra, P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci. 2008 (2008), 1–10.
  20. N. Mustafa, Some subclasses of analytic functions of complex order, Turk J Math, 42 (2018), 2423–2435.
  21. M. Naeem, S. Hussain, F. M. Sakar, Subclasses of uniformly convex and starlike functions associated with Bessel functions, Turk J Math, 43 (2019), 2433 – 2443.
  22. J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Am. Math. Soc. 223 (1976), 337–346.
  23. H. Orhan, M. Çağlar, L. -I. Çotîrlă, Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli, Mathematics 11 (5) (2023), 1147.
  24. Ç. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Göttingen, Germany, 1975.
  25. M. Raza, S. N. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), 412.
  26. G. S. Salagean, Subclasses of univalent functions, in: Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1983, 362–372.
  27. G. Shanmugam, B. A. Stephen, K. O. Babalola, Third Hankel determinant for a-starlike functions, Gulf J. Math. 2 (2014), 107–113.
  28. L. Shi, H. M. Srivastava, M. Arif, S. Hussain, H. Khan, An investigation of the third hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry 11 (2019), 598.
  29. G. Singh, On the second Hankel determinant for a new subclass of analytic functions, J. Math. Sci. Appl. 2 (2014), 1–3.
  30. J. Sokol, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49 (2009), 349–353.
  31. J. Sokol, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk, Politech. Rzeszowskiej Mat. 19 (1996), 101–105.
  32. H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the Lemniscate of Bernoulli, Matematics 7 (9) (2019), 848
  33. H. M. Srivastava, S. Altinkaya, S. Yalçcin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat 32 (2018), 503–516.
  34. H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry 11 (2019), 292.
  35. H. Y. Zhang, H. Tang, X. M. Niu, Third-order Hankel determinant for certain class of analytic functions related with exponential function, Symmetry 10 (2018), 501.
DOI: https://doi.org/10.2478/awutm-2023-0009 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 105 - 120
Published on: Jul 31, 2023
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Syed Ghoos Ali Shah, Saqib Hussain, Shahid Lateef, F. Müge Sakar, Maslina Darus, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.