D. Breaz, A. Cätaş, L. -I. Cotîrla, On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential function, An. Şt. Univ. “Ovidius” Constanţa Ser. Mat. 30 (2022), 75–89.
N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc. 45 (2019), 213–232.
D. V. Krishna, B. Venkateswarlu, T. RamReddy, Third Hankel determinant for bounded turning functions of order alpha, J. Niger. Math. Soc. 34 (2015), 121–127.
M. S. Liu, J. F. Xu, M. Yang, Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal. (2014), 603180.
W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Z. Li, F. Ren, L. Yang, S. Zhang (eds.), Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Int. Press, Cambridge, 1994, 157–169.
S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, Khan, I. B. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry 11 (2019), 347.
S. S. Miller, P. T. Mocanu, Differential Subordinations Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker, New York, 2000.
A. K. Mishra, P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci. 2008 (2008), 1–10.
M. Naeem, S. Hussain, F. M. Sakar, Subclasses of uniformly convex and starlike functions associated with Bessel functions, Turk J Math, 43 (2019), 2433 – 2443.
H. Orhan, M. Çağlar, L. -I. Çotîrlă, Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli, Mathematics 11 (5) (2023), 1147.
M. Raza, S. N. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), 412.
L. Shi, H. M. Srivastava, M. Arif, S. Hussain, H. Khan, An investigation of the third hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry 11 (2019), 598.
J. Sokol, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk, Politech. Rzeszowskiej Mat. 19 (1996), 101–105.
H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the Lemniscate of Bernoulli, Matematics 7 (9) (2019), 848
H. M. Srivastava, S. Altinkaya, S. Yalçcin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat 32 (2018), 503–516.
H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry 11 (2019), 292.
H. Y. Zhang, H. Tang, X. M. Niu, Third-order Hankel determinant for certain class of analytic functions related with exponential function, Symmetry 10 (2018), 501.