R. Boruga (Toma), D. I. Borlea (Pätraşcu), D. M. M. Toth, On uniform stability with growth rates in Banach spaces, 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI) (2021), 000393-000396.
T. Caraballo, J. Duan, K. Lu, B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud. 10 (2010), 23-52.
C. Chicone, Yu. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys and Monographs 70, American Mathematical Society, 1999.
J. L. Daleckii, M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, Trans. Math. Monographs 43, American Mathematical Society,1974.
D. Dragičević, A. L. Sasu, B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math. 38 (2022), 663-680.
A. Gǎinǎ, M. Megan , C. F. Popa, Uniform dichotomy concepts for discrete-time skew evolution cocycles in Banach Spaces, Mathematics 9 (17) (2021), 2177, 1-11.
M. Megan, A. L. Sasu, B. Sasu, Stabilizability and controllability of systems associated to linear skewproduct semiflows, Rev. Mat. Complut. 15 (2002), 599-618.
M. Megan, C. Stoica, Exponential instability of skew-evolution semiflows in Banach spaces, Studia Univ. Babeş-Bolyai, Seria Math LIII (1) (2008), 17-24.
C. Stoica, M. Megan, Exponential dichotomy and trichotomy for skew-evolution semiflows on Banach spaces, Preprint Univ. Bordeaux (2008), 1-6, arXiv 0804.3558.
T. M. Személy Fülöp, M. Megan, D. I. Borlea (Pǎtraşcu), On uniform stability with growth rates of stochastic skew-evolution semiflows in Banach spaces, Axioms 10 (2021) 182.