S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
M. S. Abdo, T. Abdeljawad, K. D. Kishor, M. A. Alqudah, M. A. Saeed, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Difference Equ. (2021), Paper No. 65, 17 pp
R. S. Adiguzel, U. Aksoy, E. Karapinar, I.M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci., https://doi.org/10.1002/mma.6652
R. S. Adiguzel, U. Aksoy, E. Karapinar, I.M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM (2021), 115-155, https://doi.org/10.1007/s13398-021-01095-3
R. S. Adiguzel, U. Aksoy, E. Karapinar, I.M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math. 20 (2021), 313-333.
H. Akhadkulov, F. Alsharari, T. Y. Ying, Applications of Krasnoselskii-Dhage type fixed-point Theorems to fractional hybrid differential equations, Tamkang J. Math. 52 (2) (2021), 281-292.
B. Alqahtani, H. Aydi, E. Karapinar, V. Rakocevic, A solution for Volterra fractional integral equations by hybrid contractions, Mathematics 7 (2019), 694, https://doi.org/10.3390/math7080694
A. Atangana, On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl. Math. Comput. 273 (2016), 948-956.
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci. 20 (2016), 763-769.
B. C. Dhage, Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations, Differ. Equ. Appl. 5 (2013), 155-184.
B. C. Dhage, Global attractivity results for comparable solutions of nonlinear hybrid fractional integral equations, Differ. Equ. Appl. 6 (2014), 165-186.
B. C. Dhage, Partially condensing mappings in ordered normed linear spaces and applications to functional integral equations, Tamkang J. Math. 45 (4) (2014), 397-426.
B. C. Dhage, Nonlinear D-set-contraction mappings in partially ordered normed linear spaces and applications to functional hybrid integral equations, Malaya J. Mat. 3 (1) (2015), 62-85.
B. C. Dhage, N. S. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math. 44 (2013), 171-186.
B. D. Karande, S. N. Kondekar, Existence of solution to a quadratic functional integrodifferential fractional equation, Commun. Math. Appl. 11 (4) (2020), 635-650.
E. Karapinar, H. D. Binh, N. H. Luc, N. H. Can, On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Adv. Differ. Equ. 2021 (2021), 70, https://doi.org/10.1186/s13662-021-03232-z
E. Karapinar, A. Fulga, M. Rashid, L. Shahid, H. Aydi, Large contractions on quasi-metric spaces with an application to nonlinear fractional differential-equations, Mathematics 7 (2019), 444, https://doi.org/10.3390/math7050444
K. D. Kucche, S. T. Sutar, Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative, Chaos Solitons Fractals 143 (2021), 9 pp.
K. D. Kucche, S. T. Sutar, On nonlinear hybrid fractional differential equations with Atangana-Baleanu-Caputo derivative, Chaos Solitons Fractals 143 (2021), 11 pp.
J. E. Lazreg, S. Abbas, M. Benchohra, E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces, Open Math. 19 (2021), 363-372, https://doi.org/10.1515/math-2021-0040
H. Lu, S. Sun, D. Yang, H. Teng, Theory of fractional hybrid differential equations with linear perturbations of second type, Bound. Value Probl. 23 (2013) 1-16.