Have a personal or library account? Click to login

Determinant Inequalities for Positive Definite Matrices Via Diananda’s Result for Arithmetic and Geometric Weighted Means

Open Access
|May 2023

Abstract

In this paper we prove among others that, if (Aj)j=1,...,m are positive definite matrices of order n ≥ 2 and qj ≥ 0, j = 1, ..., m with j=1mqj=1$$\sum\nolimits_{j = 1}^m {{q_j} = 1} $$, then 011mini{1,,m}{ qi }×[ i=1mqi(1qi)[ det(Ai) ]12n+11i<jmqiqj[ det(Ai+Aj) ]1 ]i=1mqi[ det(Ai) ]1[ det(i=1mqiAi) ]11mini{1,,m}{ qi }×[ i=1mqi(1qi)[ det(Ai) ]12n+11i<jmqiqj[ det(Ai+Aj) ]1 ].

DOI: https://doi.org/10.2478/awutm-2023-0003 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 21 - 34
Published on: May 3, 2023
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Silvestru Sever Dragomir, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.