Have a personal or library account? Click to login
On uniform h-dichotomy of skew-evolution cocycles in Banach spaces Cover
By: Ariana Găină  
Open Access
|Dec 2022

References

  1. [1] L. Barreira, C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–5219.10.1016/j.na.2009.04.005
  2. [2] A. Bento, N. Lupa, M. Megan, C. Silva, Integral conditions for nonuniform μ−dichotomy on the half-line, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 3063–3077.10.3934/dcdsb.2017163
  3. [3] R. Boruga, M. Megan, On uniform polynomial dichotomy in Banach spaces, Bul. Ştiinţ. Univ. Politeh. Timiş., Ser. Mat.-Fiz. 63 (77), Issue 1 (2018), 32–40.
  4. [4] R. Boruga (Toma), M. Megan, D. M-M. Toth, Integral characterizations for uniform stability with growth rates in Banach spaces, Axioms 10, 235 (2021), 1–12.10.3390/axioms10030235
  5. [5] R. Boruga (Toma), M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math. 37 (2021), 45–51.10.37193/CJM.2021.01.05
  6. [6] R. Boruga (Toma), M. Megan, D. M-M. Toth, On uniform instability with growth rates in Banach spaces, Carpathian J. Math. 38 (3) (2022), 789–796.10.37193/CJM.2022.03.22
  7. [7] R. Boruga, M. Megan, On some characterizations for uniform dichotomy of evolution operators in Banach spaces, Mathematics 10 (19), 3704 (2022), 1–21.10.3390/math10193704
  8. [8] W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Math. Springer-Verlag, Berlin-New York, 1978.10.1007/BFb0067780
  9. [9] J. L. Daleckii, M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, Trans. Math. Monographs, vol. 43 ( 1974), Amer. Math. Soc., Providence, R. I.
  10. [10] R. Datko, Uniform asymptotic stability of evolutionary processes in Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.10.1137/0503042
  11. [11] R. Datko, The uniform asymptotic stability of certain neutral differential-difference equations, J. Math. Anal. Appl. 58 (1977), 510–526.10.1016/0022-247X(77)90189-5
  12. [12] D. Dragičević, A. L. Sasu, B. Sasu, On the asymptotic behavior of discrete dynamical systems - An ergodic theory approach, J. Differential Equations 268 (2020), 4786–4829.10.1016/j.jde.2019.10.037
  13. [13] D. Dragičević, A. L. Sasu, B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math. 38 (2022), 663–680.10.37193/CJM.2022.03.12
  14. [14] D. Dragičević, A. L. Sasu, B. Sasu, Admissibility and polynomial dichotomy of discrete nonautonomous systems, Carpathian J. Math. 38 (2022), 737–762.10.37193/CJM.2022.03.18
  15. [15] A. Găină, M. Megan, C. F. Popa, Uniform dichotomy concepts for discrete-time skew evolution cocycles in Banach spaces, Mathematics 9 (17), 2177 (2021), 1–11.10.3390/math9172177
  16. [16] P. V. Hai, Polynomial stability and polynomial instability for skew-evolution semiflows, Results Math. 74, 175 (2019), 1–19.10.1007/s00025-019-1099-3
  17. [17] W. Littman, A generalization of a theorem of Datko and Pazy, Advances in Computing and Control, Lecture Notes in Control and Inform. Sci. 130, Springer-Verlag, Berlin, 1989, 318–323.10.1007/BFb0043280
  18. [18] N. Lupa, M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh. Math. 174 (2014), 265–284.10.1007/s00605-013-0517-y
  19. [19] J. L. Massera, J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure Appl. Math. 21 Academic Press, New York-London, 1966.
  20. [20] M. Megan, On H- stability of evolution operators, Qualitative Problems for Differential Equations and Control Theory, World Sci. Publishing, 1995, 33–40.
  21. [21] M. Megan, On (h, k)-dichotomy of evolution operators in Banach spaces, Dyn. Syst. Appl. 5 (2) (1996), 189–195.
  22. [22] M. Megan, A. L. Sasu, B. Sasu, Stabilizability and controlability of systems associated to linear skew-product semiflows, Rev. Mat. Complut. 15 (2) (2002), 599–618.10.5209/rev_REMA.2002.v15.n2.16932
  23. [23] M. Megan, A. L. Sasu, B. Sasu, Uniform exponential dichotomy and admissibility for linear skew-product semiflows, Oper. Theory Adv. Appl. 153 (2004), 185–195.10.1007/3-7643-7314-8_11
  24. [24] M. Megan, A. L. Sasu, B. Sasu, Exponential stability and exponential instability for linear skew-product flows, Math. Bohem. 129 (3) (2004), 225–243.10.21136/MB.2004.134146
  25. [25] M. Megan, C. Stoica, L. Buliga, On asymptotic behaviors for linear skew evolution semi-flows in Banach spaces, Carpathian J. Math. 23 (2007), 117–125.
  26. [26] M. Megan, C. Stoica, Discrete asymptotic behaviors for skew-evolution semiflows on Banach spaces, Carpathian J. Math. 24 (2008), 348–355.
  27. [27] M. Megan, C. Stoica, Concepts of dichotomy for skew-evolution semiflows in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl. 2 (2) (2010), 125–140.
  28. [28] C. L. Mihiţ, M. Lăpădat, On uniform polynomial dichotomy of skew-evolution semiflows on the half-line, Bul.Ştiinţ. Univ. Politeh. Timiş., Ser. Mat.-Fiz. 62 (2017), 54–61.
  29. [29] J. van Neerven, Exponential stability of operators and operator semigroups, J. Funct. Anal. 130 (1995), 293–309.10.1006/jfan.1995.1071
  30. [30] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, New York, 1983.10.1007/978-1-4612-5561-1
  31. [31] O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z. 32 (1930), 703–728.10.1007/BF01194662
  32. [32] A. P. Petre, M. Megan, On uniform exponential dichotomy of linear skew-product three-parameter semiflows in Banach spaces, ROMAI J. 7 (1) (2011), 141–150.
  33. [33] M. Pinto, Asymptotic integration of a system resulting from the perturbation of an h-system, J. Math. Anal. Appl. 131 (1988), 194–216.10.1016/0022-247X(88)90200-4
  34. [34] S. Rolewicz, On uniform N - equistability, J. Math. Anal. Appl. 115 (1986), 434–441.10.1016/0022-247X(86)90006-5
  35. [35] R. J. Sacker, G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems II, J. Differential Equations 22 (1976), 478–496.10.1016/0022-0396(76)90042-5
  36. [36] B. Sasu, Integral conditions for exponential dichotomy: A nonlinear approach, Bull. Sci. Math. 134 (2010), 235–246.10.1016/j.bulsci.2009.06.006
  37. [37] A. L. Sasu, B. Sasu, Integral equations, dichotomy of evolution families on the half-line and applications, Integral Equations Operator Theory 66 (1) (2010), 113–140.10.1007/s00020-009-1735-5
  38. [38] A. L. Sasu, M. Megan, B. Sasu, On Rolewicz-Zabczyk techniques in the stability theory of dynamical systems, Fixed Point Theory 13 (2012), 205–236.
  39. [39] C. Stoica, M. Megan, On skew-evolution semiflows in infinite dimensional spaces, SIAM International Conference on Emerging Topics in Dynamical Systems and Partial Differential Equations DSPDEs10, Barcelona, Spain, June 2010.
  40. [40] L. Zhou, K. Lu, W. Zhang, Roughness of tempered exponential dichotomies for infinite-dimensional random difference equations, J. Differential Equations 254 (2013), 4024–4046.10.1016/j.jde.2013.02.007
  41. [41] L. Zhou, K. Lu, W. Zhang, Equivalences between nonuniform exponential dichotomy and admissibility, J. Differential Equations 262 (2017), 682–747.10.1016/j.jde.2016.09.035
DOI: https://doi.org/10.2478/awutm-2022-0020 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 96 - 106
Published on: Dec 24, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Ariana Găină, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.