Have a personal or library account? Click to login
The Ψ–Asymptotic Equivalence of the Lyapunov Matrix Differential Equations with Integral Term as Right Side and Modified Argument Cover

The Ψ–Asymptotic Equivalence of the Lyapunov Matrix Differential Equations with Integral Term as Right Side and Modified Argument

Open Access
|Dec 2022

References

  1. [1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Company, Inc. New York 1960.
  2. [2] F. Brauer, J. S. W. Wong, On asymptotic behavior of perturbed linear systems, J. Differential Equations 6 (1969), 142–153.10.1016/0022-0396(69)90122-3
  3. [3] F. Brauer, J. S. W. Wong, On asymptotic relationships between solutions of two systems of ordinary differential equations, J. Differential Equations 6 (1969), 527–543.10.1016/0022-0396(69)90008-4
  4. [4] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Company, Boston, 1965.
  5. [5] A. Diamandescu, On the Ψ-asymptotic equivalence of the Ψ - bounded solutions of two Lyapunov matrix differential equations, ITM Web of Conferences 34 (2020), 03006.10.1051/itmconf/20203403006
  6. [6] A. Diamandescu, On the Ψ instability of a nonlinear Lyapunov matrix differential equations, An. Univ. Vest Timiş., Ser. Mat.-Inform. XLIX (1) (2011), 21–37.
  7. [7] A. Diamandescu, On Ψ- Bounded Solutions for a nonlinear Lyapunov Matrix Differential Equation on ℝ, An. Univ. Vest Timiş., Ser. Mat.-Inform. LVI (2) (2018), 131–150.10.2478/awutm-2018-0020
  8. [8] A. Diamandescu, Note on the Ψ-asymptotic relationships between Ψ-bounded solutions of two Lyapunov matrix differential equations, Int. J. Nonlinear Anal. Appl. 13 (2) (2022), 2361–2372.
  9. [9] A. Diamandescu, On the Ψ-Conditional Exponential Asymptotic Stability of a Nonlinear Lyapunov Matrix Differential Equation with Integral Term as Right Side, An. Univ. Vest Timiş., Ser. Mat.-Inform. 58 (1), (2022), 56–75.10.2478/awutm-2022-0005
  10. [10] T. G. Hallam, On asymptotic equivalence of the bounded solutions of two systems of differential equations, Michigan Math. J. 16 (1969), 353–363.10.1307/mmj/1029000319
  11. [11] J. R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons Ltd, Chichester, 1999.
  12. [12] I. M. Olaru, The Asymptotic Equivalence of the Differential Equations with Modified Argument, Acta Univ. Apulensis, Math. Inform. 11 (2006), 211–217.
  13. [13] I. A. Rus, Generalized contractions, Seminar on fixed point theory 3 (1983), 1–130.
  14. [14] V. A, Staikos, A note on the boundedness of solutions of ordinary differential equations, Boll. Unione Mat. Ital. S. IV 1 (1968), 256–261.
  15. [15] P. Talpalaru, Quelques problemes concernant l equivalence asymptotique des systemes differentiels, Boll. Unione Mat. Ital. S. IV 4 (1971) 164–186.
DOI: https://doi.org/10.2478/awutm-2022-0018 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 67 - 84
Published on: Dec 24, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Aurel Diamandescu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.