Have a personal or library account? Click to login
On some growth concepts for dichotomic behaviors of evolution operators Cover
Open Access
|Dec 2022

References

  1. [1] L. Barreira, C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–5219.10.1016/j.na.2009.04.005
  2. [2] A.J.G. Bento, C. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal. 257 (2009), 122–148.10.1016/j.jfa.2009.01.032
  3. [3] R. Boruga (Toma), M. Megan, On some characterizations for uniform dichotomy of evolution operators in Banach spaces, Mathematics 10 (2022), 3704.10.3390/math10193704
  4. [4] R. Boruga, M. Megan, D. M.-M. Toth, On uniform instability with growth rates in Banach spaces, Carpathian J. Math. 38 (3) (2022), 789–796.10.37193/CJM.2022.03.22
  5. [5] R. Boruga (Toma), M. Megan, Nonuniform polynomial dichotomy with Lyapunov type norms, Ann. Acad. Rom. Sci. Ser. Math. Appl. 12 (1-2) (2020), 329–343.10.56082/annalsarscimath.2020.1-2.329
  6. [6] R. Boruga (Toma), M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math. 37 (2021), 45–51.10.37193/CJM.2021.01.05
  7. [7] R. Boruga (Toma), M. Megan, D. M.-M. Toth, Integral characterizations for uniform stability with growth rates in Banach spaces, Axioms 10 (2021), 235.10.3390/axioms10030235
  8. [8] R. Boruga, M. Megan, Nonuniform polynomial dichotomy with invariant projection families, The 15th ICMA Conf. Proc., Politehnica University of Timisoara (2018), 30–46.
  9. [9] R. Boruga (Toma), D. I. Borlea (Pătraşcu), D. M.-M. Toth, On uniform stability with growth rates in Banach spaces, 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI) (2021), pp. 000393–000396.10.1109/SACI51354.2021.9465607
  10. [10] R. Boruga, M. Megan, On uniform polynomial dichotomy in Banach spaces, Bul. Ştiinţ. Univ. Politeh. Timiş., Ser. Mat.-Fiz. 63(77) (2018), 32–40.
  11. [11] V. Crai, M. Megan, (h, k)-dichotomy and Lyapunov type norms, An. Univ. Vest Timiş. Ser. Mat.-Inform. 56 (2) (2018), 115–130.10.2478/awutm-2018-0019
  12. [12] D. Dragičević, A. L. Sasu, B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math. 38 (2022), 663–680.10.37193/CJM.2022.03.12
  13. [13] D. Dragičević, A. L. Sasu, B. Sasu, Admissibility and polynomial dichotomy of discrete nonautonomous systems, Carpathian J. Math. 38 (2022), 737–762.10.37193/CJM.2022.03.18
  14. [14] A. Găină, M. Megan, C.F. Popa, Uniform dichotomy concepts for discrete-time skew evolution cocycles in Banach spaces, Mathematics 9 (2021), 2177.10.3390/math9172177
  15. [15] P. V. Hai, On the polynomial stability of evolution families, Appl. Anal. 95 (2016), 1239–1255.10.1080/00036811.2015.1058364
  16. [16] P. V. Hai, Polynomial stability and polynomial instability for skew-evolution semiflows, Results Math. 175 (2019), 1–19.10.1007/s00025-019-1099-3
  17. [17] N. Lupa, Comportări asimptotice exponenţiale pentru operatori de evoluţie n spaţii Banach, Editura Politehnica, Timişoara, 2014.
  18. [18] C. L. Mihiţ, M. Lăpădat, On uniform polynomial dichotomy of skew-evolution semiflows on the half-line, Bul.Ştiinţ. Univ. Politeh. Timiş., Ser. Mat.-Fiz. 62 (2017), 54–61.
  19. [19] M. Megan, On H- stability of evolution operators, Qualitative Problems for Differential Equations and Control Theory, World Scientific Publishing (1995), 33–40.
  20. [20] M. Megan, On (h, k)-dichotomy of evolution operators in Banach spaces, Dyn. Syst. Appl. 5 (2) (1996), 189–195.
  21. [21] M. Megan, C. Stoica, On uniform exponential trichotomy of evolution operators in Banach spaces, Integral Equations Operator Theory 60 (4) (2008), 499–506.10.1007/s00020-008-1555-z
  22. [22] M. Megan, B. Sasu, A.L. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations and Operator Theory 44 (2002), 71–78.10.1007/BF01197861
  23. [23] M. Megan, A.L. Sasu, B. Sasu, On uniform exponential dichotomy of linear skew product semiflows, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 1–21.10.36045/bbms/1047309409
  24. [24] M. Megan, A. L. Sasu, B. Sasu, The Asymptotic Behavior of Evolution Families, Ed. Mirton 2003.
  25. [25] M. Megan, A. L. Sasu, B. Sasu, Nonuniform exponential unstability of evolution operators in Banach spaces, Glas. Mat. 56 (2001), 287–296.
  26. [26] C. L. Mihiţ, On uniform h-stability of evolution operators in Banach spaces, Theory Appl. Math. Comput. Sci. 6 (2016), 19–27.
  27. [27] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1-2) (1984), 161–176.10.1524/anly.1984.4.12.161
  28. [28] M. Pinto, Asymptotic integration of a system resulting from the perturbation of an h-system, J. Math. Anal. Appl. 131 (1) (1988), 194–216.10.1016/0022-247X(88)90200-4
  29. [29] M.L. Rămneanţu, T. Ceauşu, M. Megan, On nonuniform polynomial dichotomy of evolution operators in Banach spaces, Int. J. Pure Appl. Math. 75 (3) (2012), 305–318.
  30. [30] M. L. Rămneanţu, M. Megan, T. Ceauşu, Polynomial instability of evolution operators in Banach spaces, Carpathian J. Math. 29 (2013), 77–83.10.37193/CJM.2013.01.06
  31. [31] A. L. Sasu, M. G. Babutia, B. Sasu, Admissibility and nonuniform exponential dichotomy on the half-line, Bull. Sci. Math. 137 (2013), 466–484.10.1016/j.bulsci.2012.11.002
DOI: https://doi.org/10.2478/awutm-2022-0017 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 56 - 66
Published on: Dec 24, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Rovana Boruga Toma, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.