Have a personal or library account? Click to login
Fuzzy quasi-b-metric spaces Cover

References

  1. [1] M.S. Ashraf, R. Ali, N. Hussain, Geraghty type contractions in fuzzy b-metric spaces with application to integral equations, Filomat 34 (9) (2020), 3083–3098.10.2298/FIL2009083A
  2. [2] S. Batul, F. Mehmood, A. Hussain, D. Sagheer, H. Aydi, A. Mukheimer, Multivalued contraction maps on fuzzy b-metric spaces and an application, AIMS Math. 7 (4) (2022), 5925–5942.10.3934/math.2022330
  3. [3] V. Gregori, S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topol. 5 (1) (2004), 128–136.10.4995/agt.2004.2001
  4. [4] V. Gupta, S.S. Chauhan, I.K. Sandhu, Banach contraction theorem on extended fuzzy cone b-metric space, Thai J. Math. 20 (1) (2022), 177-194.
  5. [5] K. Javed, F. Uddin, H. Aydi, M. Arshad, U. Ishtiaq, H. Alsamir, On Fuzzy b-Metric-Like Spaces, J. Funct. Spaces 2021 (2021), Article ID 6615976.10.1155/2021/6615976
  6. [6] K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-Theoretic Fixed Point Results in Fuzzy b-Metric Spaces with an Application, J. Math. 2021 (2021), Article ID 6663707.10.1155/2021/6663707
  7. [7] F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy b-metric spaces, J. Math. Anal. 8 (6) (2017), 124–131.
  8. [8] S. Nădăban, Fuzzy euclidean normed spaces for data mining applications, Int. J. Comp. Commun. Control 10 (1) (2015), 70–77.10.15837/ijccc.2015.1.1564
  9. [9] S. Nădăban, Fuzzy b-metric spaces, Int. J. Comp. Commun. Control 11 (2) (2016), 273–281.10.15837/ijccc.2016.2.2443
  10. [10] S. Nădăban, Fuzzy pseudo-norms and fuzzy F-spaces, Fuzzy Sets and Systems 282 (2016), 99–114.10.1016/j.fss.2014.12.010
  11. [11] S. Nădăban, I. Dzitac, Atomic Decompositions of Fuzzy Normed Linear Spaces for Wavelet Applications, Informatica 25 (4) (2014), 643–662.10.15388/Informatica.2014.33
  12. [12] S. Nădăban, I. Dzitac, Some properties and applications of fuzzy quasi-pseudo-metric spaces, Informatica 27 (1) (2016), 141–159.10.15388/Informatica.2016.73
  13. [13] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 314–334.10.2140/pjm.1960.10.313
  14. [14] M.H. Shah, N. Hussain, Nonlinear contraction in partially ordered quasi b-metric spaces, Commun. Korean Math. Soc. 27 (1) (2012), 117–128.10.4134/CKMS.2012.27.1.117
  15. [15] Y. Wu, On partial fuzzy k-(pseudo-)metric spaces, AIMS Math. 6 (11) (2021), 11642–11654.10.3934/math.2021677
  16. [16] Y. Zhong, A. Sostak, A new definition of fuzzy k-pseudo metric and its induced fuzzifying structures, Iran. J. Fuzzy Syst. 18 (6) (2021), 55–66.
DOI: https://doi.org/10.2478/awutm-2022-0015 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 38 - 48
Published on: Dec 24, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Sorin Nădăban, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.