Have a personal or library account? Click to login
On uniform polynomial splitting of variational nonautonomous difference equations in Banach spaces Cover

On uniform polynomial splitting of variational nonautonomous difference equations in Banach spaces

Open Access
|Dec 2022

References

  1. [1] B. Aulbach, J. Kalkbrenner, Exponential forward splitting for noninvertible difference equation, Comput. Math. Appl. 42 (2001), 743–754.10.1016/S0898-1221(01)00194-8
  2. [2] L. Barreira, C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–5219.10.1016/j.na.2009.04.005
  3. [3] A.J.G. Bento, C.M. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal. 257 (2009), 122–148.10.1016/j.jfa.2009.01.032
  4. [4] L.E. Biriş, T. Ceauşu, C. L. Mihiţ, On uniform exponential splitting of variational nonautonomous difference equations in Banach spaces, In: Elaydi, S., Pötzsche, C., Sasu, A. (eds) Difference Equations, Discrete Dynamical Systems and Applications. ICDEA 2017. Springer Proceedings in Mathematics & Statistics, vol. 287. Springer, 199–213.10.1007/978-3-030-20016-9_7
  5. [5] L. E. Biriş, T. Ceauşu, C. L. Mihiţ, I.-L. Popa, Uniform exponential trisplitting – a new criterion for discrete skew-product semiflows, Electron. J. Qual. Theory Differ. Equ. 70 (2018), 1–22.10.14232/ejqtde.2019.1.70
  6. [6] C. Chicone, Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys Monogr. 70, Amer. Math. Soc. 1999.10.1090/surv/070
  7. [7] S. N. Chow, H. Leiva, Two definitions of exponential dichotomy for skew-product semiflows in Banach spaces, Proc. Amer. Math. Soc. 124 (1996), 1071–1081.10.1090/S0002-9939-96-03433-8
  8. [8] R. Datko, Uniform asymptotic stability of evolutionary processes in Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.10.1137/0503042
  9. [9] D. Dragičević, Admissibility and nonuniform polynomial dichotomies, Math. Nachr. 293 2(2020), 226–243.10.1002/mana.201800291
  10. [10] D. Dragičević, A. L. Sasu, B. Sasu, Admissibility and polynomial dichotomy of discrete nonautonomous systems, Carpathian J. Math. 38 2(2022), 737–762.10.37193/CJM.2022.03.18
  11. [11] D. Dragičević, A. L. Sasu, B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math. 38 2(2022), 663–680.10.37193/CJM.2022.03.12
  12. [12] S. Elaydi, R. J. Sacker, Skew-product dynamical systems: applications to difference equations, Proceedings of Second Annual Celebration of Math United Arab Emirates (2005).
  13. [13] N. T. Huy, H. Phi, Discrete characterizations of exponential dichotomy of linear skew product semiflows over semiflows, J. Math. Anal. Appl. 362 (2010), 46–57.10.1016/j.jmaa.2009.09.062
  14. [14] Y. Latushkin, R. Schnaubelt, Evolution semigroups, translation algebras and exponential dichotomy of cocycles, J. Differential Equations 159 (1999), 321-369.10.1006/jdeq.1999.3668
  15. [15] M. Megan, I.-L. Popa, Exponential splitting for nonautonomous linear discrete-time systems in Banach spaces, J. Comput. Appl. Math. 312 (2017), 181–191.10.1016/j.cam.2016.03.036
  16. [16] M. Megan, A.L. Sasu, B. Sasu, On uniform exponential stability of linear skew-product semiflows in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin 9(1), (2002), 143–154.10.36045/bbms/1102715145
  17. [17] M. Megan, A. L. Sasu, B. Sasu, Exponential instability of linear skew-product semiflows in terms of Banach function spaces, Results Math. 45 (3–4), (2004), 309–318.10.1007/BF03323385
  18. [18] M. Megan, C. Stoica, Discrete asymptotic behaviors for skew-evolution semiflows on Banach spaces, Carpathian J. Math. 24 (2008), 348–355.
  19. [19] C. Pötzsche, Geometric theory of discrete nonautonomous dynamical systems, Springer, 2010.10.1007/978-3-642-14258-1
  20. [20] R. J. Sacker, G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc. 11 (1977), no. 190, 67 pp.10.1090/memo/0190
DOI: https://doi.org/10.2478/awutm-2022-0014 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 22 - 37
Published on: Dec 24, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Larisa Elena Biriş, Traian Ceauşu, Ioan-Lucian Popa, Nicolae Seimeanu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.