Have a personal or library account? Click to login
THA-surfaces of finite type in the Galilean space 𝔾3 Cover

References

  1. [1] A.T. Ali, Position vectors of curves in the Galilean space 𝔾3, Mat. Vesnik (2012), 200-210.
  2. [2] M. E. Aydin, A. O. Öğrenmiş, M. Ergüt, Classification of factorable surfaces in the pseudo-Galilean space, Glasnik Math (2015), 441-451.10.3336/gm.50.2.12
  3. [3] M. Bekkar, B. Senoussi, Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying Δri = λiri, J. Geom (2012), 17 - 29.10.1007/s00022-012-0117-3
  4. [4] M. Bekkar, B. Senoussi, Translation surfaces in the 3-dimensional space satisfying ΔIIIri = µiri, J. Geom (2012), 367-374.10.1007/s00022-012-0136-0
  5. [5] B.-Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1984.10.1142/0065
  6. [6] M. Dede, C. Ekici, On Minimal surfaces in Galilean space, Conference Proceedings of Science and Technology (2019), 142-147.
  7. [7] M. Dede, C. Ekici, W. Goemans, Y. Ünlütürk, Twisted surfaces with vanishing curvature in Galilean 3-space, Int. J. Geom. Methods Mod. Phys. (2018).10.1142/S0219887818500019
  8. [8] F. Dillen, J. Pas, L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math (1990), 10-21.10.2996/kmj/1138039155
  9. [9] A. Ferrandez, O. J. Garay, P. Lucas, On a certain class of conformally flat Euclidean hypersurfaces, Proc. of the Conf, in Global Analysis and Global Differential Geometry, Berlin, 1990.10.1007/BFb0083627
  10. [10] O. Röschel, Die Geometrie des Galileischen raumes, Bericht der Mathematisch-Statistischen Sektion in der Forschungs-Gesellschaft Joanneum, Bericht, Habilitationsschrift 256 (1984).
  11. [11] D. Sağlam, A. Sabuncuoğlu, Minimal homothetical lightlike hypersurfaces of semi-Euclidean spaces, Kuwait J. Sci. Eng. 38 (2011), 1-14.
  12. [12] B. Senoussi, A. Bennour, K. Beddani, THA-surfaces in the Galilean space 𝔾3, J. Adv. Math. Stud. 14 (2) (2021), 187-196.
  13. [13] B. Senoussi, A. Bennour, K. Beddani, THA-surfaces in 3-dimensional Euclidean space, Asia Pac. J. Math (2021), 1-15.
  14. [14] Ž. M. Šipuš, Ruled Weingarten surfaces in Galilean space, Period. Math. Hungar (2008), 213-225.10.1007/s10998-008-6213-6
  15. [15] Ž. M. Šipuš, B. Divjak, Translation surface in the Galilean space, Glas. Mat. Ser. III 46 (66) (2011), 455-469.10.3336/gm.46.2.14
  16. [16] B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, Waltham, 1983.
  17. [17] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.10.2969/jmsj/01840380
DOI: https://doi.org/10.2478/awutm-2022-0007 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 85 - 99
Published on: Jun 20, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Bendehiba Senoussi, Khaled Beddani, Abdelaziz Bennour, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.