Have a personal or library account? Click to login
η-Ricci soliton on η-Einstein-like LP-Sasakian manifolds Cover

References

  1. [1] M. M. Akbar, E. Woolgar, Ricci solitons and Einstein-scalar field theory, Class. Quantum Grav., doi:10.1088/0264-9381/26/5/055015.
  2. [2] A. M. Blaga, η-Ricci soliton on Lorentzian para-Sasakian manifolds, Filomat 30 (2) (2016), 489–496.10.2298/FIL1602489B
  3. [3] A. M. Blaga, M. Crasmareanu, Torse-forming η-Ricci solitons in almost paracontact η-Einstein geometry, Filomat 31 (2) (2017), 499–504.10.2298/FIL1702499B
  4. [4] A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (1) (2015), 1–13.
  5. [5] A. M. Blaga, S. Y. Perktas, B. E. Acet, F. E. Erdogan, η Ricci solitons in (ε)-almost paracontact metric manifolds, Glasnik J. of math. 1 (2017), 1–20. (arXiv:1707.07528)
  6. [6] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2009), 205–212.10.2748/tmj/1245849443
  7. [7] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255–306.10.4310/jdg/1214436922
  8. [8] S. K. Hui, D. Chakraborty, η-Ricci solitons on η-Einstein (LCS)n-manifolds, Acta Univ. Palac. Olom. Fac. Res. Nat. Math. 55 (2) (2016), 101–109.
  9. [9] S. K. Hui, S. S. Shukla, D. Chakraborty η-Ricci solitons on η-Einstein Kenmotsu manifolds, Filomat 6 (2017), 1–6.
  10. [10] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci 12 (1989), 151–156.
  11. [11] I. Mihai, R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publi., Singapore, 1992, 155–169.
  12. [12] K. K. Baishya, P. R. Chowdhury, η-Ricci solitons in (LCS)n-manifolds, Bull. Transilv. Univ. Brasov, 58 (9) (2016), 1–12.
  13. [13] D. G. Prakasha, B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom., DOI 10.1007/s00022-016-0345-z.
  14. [14] A. A. Shaikh, K. K. Baishya, On ϕ-symmetric LP-Sasakian manifolds, Yokohama Math. J. 52 (2005), 97–112.
  15. [15] A. A. Shaikh, K. K. Baishya, Some results on LP-Sasakianmanifolds, Bull. Math. Soc. Sc. Math. Roumanie Tome, 97 (2) (2006), 197–208.
  16. [16] R. Sharma, Einstein-like P-Sasakian manifold, Mat. Vesnik 34 (2) (1982), 177–184.
  17. [17] S, Yuksel Perktas, E. Kilie, M. M. Tripathi, Saturated contraction principles for nonself operators, generalizations and applications, Int. J. Pure and Appl. Math 77 (4) (2012), 485–499.
DOI: https://doi.org/10.2478/awutm-2022-0006 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 76 - 84
Published on: Jun 20, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Susanta Das, Ashis Biswas, Kanak Kanti Baishya, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.