Have a personal or library account? Click to login
Generalizations of Libera integral operator for analytic functions Cover
By: Emel Yavuz,  H. Özlem GĂŒney and  Shigeyoshi Owa  
Open Access
|Jun 2022

References

  1. [1] C. CarathĂ©odory, Über den variabilitĂ€tsbereich der fourierschen konstanten von positiven harmonischen funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193–217.10.1007/BF03014795
  2. [2] I. S. Jack, Functions starlike and convex of order alpha, J. Lond. Math. Soc. 3 (1971), 469–474.10.1112/jlms/s2-3.3.469
  3. [3] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758.10.1090/S0002-9939-1965-0178131-2
  4. [4] S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, Marcel Dekker Incorporated, New York, Basel, 2000.10.1201/9781482289817
  5. [5] S. S. Miller, P. T. Mocanu, Marx-Strohhacker differantial subordination systems, Proc. Amer. Math. Soc. 99 (1987), 527–534.10.1090/S0002-9939-1987-0875392-3
  6. [6] S. S. Miller, P. T. Mocanu, Second order differantial inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289–305.10.1016/0022-247X(78)90181-6
  7. [7] M. Nunokawa, On the theory of multivalent functions, Pan American Math. J. 6 (1996), 87–96.
DOI: https://doi.org/10.2478/awutm-2022-0004 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 39 - 55
Published on: Jun 20, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Emel Yavuz, H. Özlem GĂŒney, Shigeyoshi Owa, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.