Have a personal or library account? Click to login
Stability by fixed point theory of impulsive differential equations with delay Cover

Stability by fixed point theory of impulsive differential equations with delay

Open Access
|Dec 2020

References

  1. [1] C. Avramescu, Sur l’existence des solutions convergentes des systèmes d’équations différentielles non linéaires, Ann. Mat. Pura Appl., 81, (1969), 147–16810.1007/BF02413501
  2. [2] M. Benchohra,J.Henderson, andS.K.Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 200610.1155/9789775945501
  3. [3] T. A. Burton, Stability by fixed point theory or Liapunov theory: a comparaison, Fixed Point Theory, 4, (2003), 15–32
  4. [4] T. A. Burton, Perron-type stability theorems for neutral equations, Nonlinear Anal., 55, (2003), 285-29710.1016/S0362-546X(03)00240-2
  5. [5] T. A. Burton and T. Furumochi, Krasnoselskii’s fixed point theorem and stability, Nonlinear Anal., 49, (2002), 445–45410.1016/S0362-546X(01)00111-0
  6. [6] T. A. Burton and T. Furumochi, Asymptotic behavior of solutions of functional differential equations by fixed point theorems, Proc. Dynamic Syst. Appl., 11, (2002), 499–519
  7. [7] J. R. Graef, J. Henderson, and A. Ouahab, Impulsive Differential Inclusions. A Fixed Point Approach, De Gruyter Series in Nonlinear Analysis and Applications 20, Berlin: de Gruyter, 201310.1515/9783110295313
  8. [8] J. R. Graef, J. Henderson, and A. Ouahab, Topological Methods for Differential Equations and Inclusions, Monographs and Research Notes in Mathematics, Boca Raton, FL: CRC Press, 201910.1201/9780429446740
  9. [9] A. Halanay and D. Wexler, Teoria Calitativa a sistemelor Impulsuri, (in Romanian), Editura Academiei Republicii Socialiste România, Bucharest, Romanian, 1968
  10. [10] D. D. Bainov, V. Lakshmikantham, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 198910.1142/0906
  11. [11] Y. C. Liu and Z. X. Li, Schaefer type theorem and periodic solutions of evolution equations, J. Math. Anal. Appl., 316, (2006), 237–25510.1016/j.jmaa.2005.04.045
  12. [12] V. D. Milman and A. A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J. (in Russian), 1, (1960), 233–237
  13. [13] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 199510.1142/2892
DOI: https://doi.org/10.2478/awutm-2019-0012 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 18 - 33
Published on: Dec 21, 2020
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Halimi Berrezoug, Jorge Losada, Juan J. Nieto, Abdelghani Ouahab, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.