Have a personal or library account? Click to login
Multivalued self almost local contractions Cover

References

  1. [1] V. Berinde and M. Păcurar, Fixed points and continuity of almost contractions, Carpathian J. Math., 19 (1), (2003), 7–22
  2. [2] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19, (2003), 7–21
  3. [3] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum, 9 (1), (2004), 43–53
  4. [4] V. Berinde, On the convergence of the Ishikawa iteration in the class of quasi operators, Acta Math. Univ. Comenianae, 73, (2004), 119–12610.1155/S1687182004311058
  5. [5] V. Berinde, A convergence theorem for some mean value fixed point iterations in the class of quasi contractive operators, Demonstr. Math., 38, (2005), 177–18410.1515/dema-2005-0120
  6. [6] V. Berinde and M. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326, (2007), 772–78210.1016/j.jmaa.2006.03.016
  7. [7] V. Berinde and M. Păcurar, Fixed points theorems for nonself single-valued almost contractions, Fixed Point Theory, 14 (2), (2013), 301–312
  8. [8] S. K. Chatterjea, Fixed-point theorems, C.R. Acad. Bulgare Sci., 25, (1972), 727-730
  9. [9] G. V. R. Babu, M. L. Sandhya, and M. V. R. Kameswari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math., 24 (1), (2008), 21–32
  10. [10] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 10, (1968), 71–7610.2307/2316437
  11. [11] V. Filipe Martins-da-Rocha and Y. Vailakis, Existence and uniqueness of a fixed point for local contractions, Econometrica, 78 (3), (2010), 1127–114110.3982/ECTA7920
  12. [12] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30, (1969), 475–48810.2140/pjm.1969.30.475
  13. [13] M. O. Osilike, Stability of the Ishikawa Iteration method for quasi-contractive maps, Indian J. Pure Appl. Math., 28 (9), (1997), 1251–1265
  14. [14] M. Păcurar and V. Berinde, Two new general classes of multi-valued weakly Picard mappings, Amer. Math. Soc., 196, (1974), 161–176
  15. [15] M. Păcurar, Iterative Methods for Fixed Point Approximation, Risoprint, Cluj-Napoca, 2009
  16. [16] I. A. Rus, Metrical fixed point theorems, Univ. of Cluj-Napoca, 1979
  17. [17] I. A. Rus, Principles and Applications of the Fixed Point Theory (in Romanian), Editura Dacia, Cluj-Napoca, 1979
  18. [18] I. A. Rus, Generalized Contractions Seminar on Fixed Point Theory 3, (1983), 1–130
  19. [19] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001
  20. [20] I. A. Rus, Picard operator and applications, Babes-Bolyai Univ., 1996
  21. [21] T. Suzuki, Fixed Point Theorems For Berinde Mappings, Bull. Kyushu Inst. Tech., Pure Appl. Math., 58, (2011), 13-19
  22. [22] M. Taskovic, Osnove teorije fiksne tacke, (Fundamental Elements of Fixed Point Theory), Matematicka Biblioteka, Beograd, 50, 1986
  23. [23] M. Zakany, Fixed Point Theorems For Local Almost Contractions, Miskolc Mathematical Notes, 18 (1), (2017), 499–50610.18514/MMN.2017.1905
  24. [24] T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math., 23, (1972), 292–29810.1007/BF01304884
DOI: https://doi.org/10.2478/awutm-2019-0010 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 122 - 138
Published on: Dec 8, 2020
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Monica Zakany, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.