Have a personal or library account? Click to login
Fixed points of a new class of pseudononspreading mappings Cover

References

  1. [1] J. Baillon, Un théorème de type ergodique pour les contractions nonlinéaires dans un espace de Hilbert, C. R. Acad. Sci., Paris Ser. A-B 280 (Aii), 280, (1975), A1511–A1514
  2. [2] V. Berinde, Iterative Approximation of Fixed Points, Springer, London, 2002
  3. [3] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20, (1967), 197–22810.1016/0022-247X(67)90085-6
  4. [4] H. Che and M. Li, A simultaneous iterative method for split equality problems of two finite families of strictly pseudononspreading mappings without prior knowledge of operator norms, Fixed Point Theory and Applications, 2015, (2015:1)10.1186/1687-1812-2015-1
  5. [5] C.E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer, London, 200910.1007/978-1-84882-190-3
  6. [6] B. Halpern, Fixed points of nonexpanding mappings, Bull. Amer. Math. Soc., 73, (1967), 957–96110.1090/S0002-9904-1967-11864-0
  7. [7] S. Iemoto and W. Takahashi, Approximating commom fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal., 71, (2009), 2080-208910.1016/j.na.2009.03.064
  8. [8] T. Igarashi; W. Takahashi and K. Tanaka, Weak convergence theorems for nonspreading mappings and equilibrium problems, in: S. Akashi, W. Takahashi, T. Tanaka (Eds.), Nonlinear Analysis and Optimization, Yokohama, (2009), 75–85
  9. [9] F. Kohsaka W. Takahashi, Fixed point theorems for a class of nonlinear mappings relate to maximal monotone operators in Banach spaces, Arch. Math. (Basel), 91, (2008), 166–17710.1007/s00013-008-2545-8
  10. [10] F. Kohsaka W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim., 19, (2008), 824-83510.1137/070688717
  11. [11] Y. Kurokawa and W. Takahashi, Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces, Nonlinear Analysis, 73, (2010), 1562–156810.1016/j.na.2010.04.060
  12. [12] M. Li and Y. Yao, Strong convergence of an iterative algorithm for λ-strictly pseudo-contractive mappings in Hilbert spaces, An. Şt. Univ. Ovidius Constanţ, 18(1), (2010)
  13. [13] S. Li, Alternating iterative algorithms for split equality problem of strictly pseudononspreading mapping, International Journal of Hybrid Information Technology, 9(5), (2016), 331-34210.14257/ijhit.2016.9.5.28
  14. [14] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16, (200), 899–91210.1007/s11228-008-0102-z
  15. [15] P. E. Maingé Ş. Mǎruş, Convergence in norm of modified KrasnoselskiMann iterations for fixed points of demicontractive mappings, Appl. Math. & Comput., 217(24), (2011)10.1016/j.amc.2011.04.068
  16. [16] L. Mǎruşter Ş. Mǎruşter, Strong convergence of the Mann iteration for -demicontractive mappings, Math. & Comput. Modell., 54(9), (2011), 2486–249210.1016/j.mcm.2011.06.006
  17. [17] M.O. Osilike and F.O. Isiogugu, Weak and strong convergence theorems for nonspsreading type-mappings in Hilbert spaces, Nonlinear Analysis, 74, (2011), 1814–182210.1016/j.na.2010.10.054
  18. [18] M.O. Osilike; F.O. Isiogugu and F.U. Attah, Strong convergence of a modified Ishikawa iterative algorithm for Lipschitz pseudocontractive mappings, J. Appl. Math. & Informatics, 31(3-4), (2013), 565–57510.14317/jami.2013.565
  19. [19] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl, 118, (2003), 417–42810.1023/A:1025407607560
  20. [20] H.K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66(2), (2002), 240–25610.1112/S0024610702003332
DOI: https://doi.org/10.2478/awutm-2019-0008 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 77 - 96
Published on: Dec 8, 2020
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 M. O. Osilike, F. O. Isiogugu, P. U. Nwokoro, E. E. Chima, O. U. Oguguo, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.