Have a personal or library account? Click to login
(h, k)-Dichotomy and Lyapunov Type Norms Cover

References

  1. [1] L. Barreira, D. Dragičević, C. Valls, Characterization of strong exponential dichotomies, Bull. Braz. Math. Soc., New Series 46 (1) (2015), 81-103.10.1007/s00574-015-0085-y
  2. [2] L. Barreira, D. Dragičević, C. Valls, From one-sided dichotomies to two-sided dichotomies, Discrete and continuous dynamical systems35 (7) (2015), 2817-2844.10.3934/dcds.2015.35.2817
  3. [3] L. Barreira, C. Valls, D. Dragičević, Nonuniform Hyperbolicity and Admissibility, Advanced Nonlinear Studies14 (2014), 791-811.10.1515/ans-2014-0315
  4. [4] A. J. G. Bento, C. M. Silva, Generalized nonuniform dichotomies and local stable manifolds, J. Dyn. Diff. Equat.25 (2013), 1139-1158.10.1007/s10884-013-9331-4
  5. [5] W. A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1978.10.1007/BFb0067780
  6. [6] J. L. Dalecki, M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Transl. Math. Monogr. Vol. 43, Amer. Math. Soc., 1974.
  7. [7] R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal.3 (1972), 428-445.10.1137/0503042
  8. [8] M. I. Kovacs, M.G. Babuţia, M. Megan, On (h,k)- dichotomy in Banach spaces, Scientific Bulletin of Politehnica University of Timişoara73 (2014).
  9. [9] T. Li, Die Stabilitätsfrage bei Differenzengleichungen, Acta Math.63 (1934), 99-141.10.1007/BF02547352
  10. [10] N. Lupa, M. Megan, Exponential dichotomies of evolution operators in Banach Spaces, Monatshefte fur Mathematik174 (2) (2014), 265-284.10.1007/s00605-013-0517-y
  11. [11] J. L. Massera, J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure Appl. Math., Vol. 21, Academic Press, 1966.
  12. [12] M. Megan, On (h, k)-dichotomy of evolution operators in Banach spaces, Dyn. Syst. Appl.5 (1996), 189-196.
  13. [13] M. Megan, B. Sasu, A. L. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integr. Equat. Oper. Th.44 (2002), 71-78.10.1007/BF01197861
  14. [14] O. Perron, Die Stabilitatsfrage bei Differentialgleichungen, Math. Z.32 (1930), 703-728.10.1007/BF01194662
  15. [15] Ya. B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat.40 (6) (1976), 1332-1379.10.1070/IM1976v010n06ABEH001835
  16. [16] Ya. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Uspekhi Mat. Nauk, 32:4 (196) (1977), 55-112.10.1070/RM1977v032n04ABEH001639
  17. [17] M. Pinto, Dichotomies and asymptotic behavior, Contributions USACH, (1992), 13-22.
  18. [18] A. L. Sasu, B. Sasu, Integral equations, dichotomy of evolution families on the half-line and applications, Integr. Equat. Oper. Th.66 (2010), 113-140.10.1007/s00020-009-1735-5
DOI: https://doi.org/10.2478/awutm-2018-0019 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 115 - 130
Published on: Apr 30, 2020
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Violeta Crai, Mihail Megan, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.