Have a personal or library account? Click to login
On uniform exponential trisplitting for cocycles of linear operators in Banach spaces Cover

On uniform exponential trisplitting for cocycles of linear operators in Banach spaces

Open Access
|Apr 2020

References

  1. [1] B. Aulbach, J. Kalkbrenner, Exponential forward splitting for noninvertible difference equation, Comput. Math. Appl.42 (2001), 743-754.10.1016/S0898-1221(01)00194-8
  2. [2] L. Barreira, C. Valls, Noninvertible cocycles: robustness and exponential dichotomies, Discrete and Continuous Dynamical Systems32 (2012), 4111-4131.10.3934/dcds.2012.32.4111
  3. [3] L.E. Biriş, T. Ceauşu, C.L. Mihiţ, On uniform exponential splitting of variational nonautonomous difference equations in Banach spaces, Recent Progress in Difference Equations, Discrete Dynamical Systems and Applications, submitted.
  4. [4] L.E. Biriş, T. Ceauşu, C.L. Mihiţ, I.-L. Popa, Uniform Exponential Trisplitting - A New Criterion for Discrete Skew-Product Semiflows, Electron. J. Qual. Theory Differ. Equ.2019, No. 70 (2019), 1-22.10.14232/ejqtde.2019.1.70
  5. [5] L. Biriş, M. Megan, On a concept of exponential dichotomy for co-cycles of linear operators in Banach spaces, Bull. Math. Soc. Sci. Math. Roumanie, 59 (107), No. 3 (2016), 217-223.
  6. [6] L.E. Biriş, R. Retezan, On exponential trichotomy of cocycles over semiflows, An. Univ. Vest Timiş. Ser. Mat.-Inform., LII, 1 (2014), 17-27.10.2478/awutm-2014-0002
  7. [7] C. Chicone, Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical surveys and monographs Vol. 70, Amer. Math. Soc., 1999.10.1090/surv/070
  8. [8] S.N. Chow, H. Leiva, Two definitions of exponential dichotomy for skew-product semiflows in Banach spaces, Proc. Amer. Math. Sc.124 (1996), 1071-1081.10.1090/S0002-9939-96-03433-8
  9. [9] P.E. Kloeden, M. Rasmusen, Nonautonomous Dynamical Systems, American Mathematical Society, Mathematical surveys and monographs Vol. 176, Amer. Math. Soc., 2011.10.1090/surv/176
  10. [10] N.T. Huy, Existence and robustness of exponential dichotomy of linear skew-product semiflows over semiflows, J. Math. Anal. Appl.333 (2007), 731-752.10.1016/j.jmaa.2006.11.029
  11. [11] Y. Latushkin, S. Montgomery-Smith, T. Randolph, Evolutionary semigroups and dichotomy of linear skew-product flows on locally compact spaces with Banach fibers, J. Differential Equations125 (1996), 73-116.10.1006/jdeq.1996.0025
  12. [12] Y. Latushkin, R. Schnaubelt, Evolution semigroups, translation algebras and exponential dichotomy of cocycles, J. Differential Equations159 (1999), 321-369.10.1006/jdeq.1999.3668
  13. [13] M. Megan, I.-L. Popa, Exponential splitting for nonautonomous linear discrete-time systems in Banach spaces, J. Comput. Appl. Math.312 (2017), 181–191.10.1016/j.cam.2016.03.036
  14. [14] C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Springer, 2010.10.1007/978-3-642-14258-1
  15. [15] M. Megan, B. Sasu, A.L. Sasu, Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows, Bull. Belg. Math. Soc. Simon Stevin10 (2003), 143-154.10.36045/bbms/1047309409
  16. [16] M. Megan, C. Stoica, L. Buliga, Trichotomy for linear skew-product semiflows, in: Applied Analysis and Differential Equations, World. Sci. Publ. Hackensak, N.J., 2007, 227-236.10.1142/9789812708229_0019
  17. [17] M. Megan, C. Stoica, L. Buliga, On asymptotic behaviour for linear skew-evolution semiflows in Banach spaces, Carpathian Journal of Mathematics, 23, No. 1-2 (2007), 117-125.10.1142/9789812708229_0019
  18. [18] M. Megan, C. Stoica, Concepts of dichotomy for skew-evolution semi-flows on Banach spaces, Annals of the Academy of the Romanian Scientists, Series on Mathematics and Applications2 (2010), 125-140.
  19. [19] C.L. Mihiţ, C.S. Stoica, M. Megan, On uniform exponential splitting for noninvertible evolution operators in Banach spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform.LIII, 2 (2015), 121-131.10.1515/awutm-2015-0019
  20. [20] R.J. Sacker, G.R. Sell, Existence of dichotomies and invariant splittings for linear differential systems I, J. Differential Equations15 (1974), 429-458.10.1016/0022-0396(74)90067-9
  21. [21] R.J. Sacker, G.R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations113 (1994), 17-67.10.1006/jdeq.1994.1113
  22. [22] A.L. Sasu, B. Sasu, Admissibility and exponential trichotomy of dynamical systems described by skew-product flows, J. Differential Equations260 (2016), 1656-1689.10.1016/j.jde.2015.09.042
DOI: https://doi.org/10.2478/awutm-2018-0017 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 81 - 103
Published on: Apr 30, 2020
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Larisa Elena Biriş, Claudia Luminiţa Mihiţ, Traian Ceauşu, Ioan-Lucian Popa, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.