Have a personal or library account? Click to login
Iterated function systems consisting of continuous functions satisfying Banach’s orbital condition Cover

Iterated function systems consisting of continuous functions satisfying Banach’s orbital condition

Open Access
|Apr 2020

References

  1. [1] J. Andres, M. Rypka, Multivalued fractals and hyperfractals, Internat. J. Bifur. Chaos Appl. Sci. Engrg.22 (2012), DOI 10.1142/S02181127412500095.10.1142/S0218127412500095
  2. [2] M. Barnsley, K., Leśniak, M. Rypka, Chaos game for IFSs on topological spaces, J. Math. Anal. Appl.435 (2016), 1458-1466.10.1016/j.jmaa.2015.11.022
  3. [3] V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics 1912, Springer, Berlin, 2007.10.1109/SYNASC.2007.49
  4. [4] M. Boriceanu, M. Bota, A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math.8 (2010), 367-377.10.2478/s11533-010-0009-4
  5. [5] C. Chifu, A. Petruşel, Multivalued fractals and generalized multivalued contractions, Chaos Solitons Fractals36 (2008), 203-210.10.1016/j.chaos.2006.06.027
  6. [6] D. Dumitru, Attractors of infinite iterated function systems containing contraction type functions, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Mat. N.S., 59 (2013), 281-298.10.2478/v10157-012-0044-5
  7. [7] F. Georgescu, IFSs consisting of generalized convex contractions, An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat., 25 (2017), 77-86.10.1515/auom-2017-0007
  8. [8] F. Georgescu, R. Miculescu, A. Mihail, Iterated function systems consisting of φ-max-contractions have attractor, in print J. Fixed Point Theory Appl., available at arXiv:1704.02652
  9. [9] G. Gwóźdź-Lukowska, J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl.356 (2009), 453-463.10.1016/j.jmaa.2009.03.023
  10. [10] T. L. Hicks, B. E. Rhoades,A Banach type fixed point theorem, Math. Japonica24 (1979), 327-330.
  11. [11] J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J.30 (1981), 713-747.10.1512/iumj.1981.30.30055
  12. [12] L. Ioana, A. Mihail, Iterated function systems consisting of φ-contractions, Results Math.72 (2017), 2203-2225.10.1007/s00025-017-0715-3
  13. [13] A. A. Ivanov, Fixed points of metric space mappings (in Russian), Isledovaniia po topologii.II, Akademia Nauk, Moskva, 1976, 5-102.
  14. [14] E. Llorens-Fuster, A. Petruşel, J.-C. Yao, Iterated function systems and well posedness, Chaos Solitons Fractals41 (2009), 1561-1568.10.1016/j.chaos.2008.06.019
  15. [15] L. Máté, The Hutchinson-Barnsley theory for certain noncontraction mappings, Period. Math. Hungar.27 (1993), 21-33.10.1007/BF01877158
  16. [16] R. Miculescu, A. Mihail, Reich-type iterated function systems, J. Fixed Point Theory Appl.18 (2016), 285-296.10.1007/s11784-015-0264-x
  17. [17] R. Miculescu, A. Mihail, A generalization of Istrăţescu’s fixed point theorem for convex contractions, Fixed Point Theory18 (2017), 689-702.10.24193/fpt-ro.2017.2.55
  18. [18] T. Nazir, S. Silvestrov, M. Abbas, Fractals of generalized F-Hutchinson operator, Waves Wavelets Fractals Adv. Anal.2 (2016), 29-40.10.1515/wwfaa-2016-0006
  19. [19] A. Petruşel, Iterated function system of locally contractive operators, Rev. Anal. Numér. Théor. Approx.33 (2004), 215-219.10.33993/jnaat332-779
  20. [20] A. Petruşel, A. Soos, Self-similar sets and fractals generated by Ćirić type operators, J. Nonlinear Sci. Appl.8 (2015), 1048-1058.10.22436/jnsa.008.06.15
  21. [21] I. A. Rus, Some fixed point theorems in metric spaces, Rend. Ist. Matem. Univ. Trieste3 (1971), 169-172.
  22. [22] I. A. Rus, On the method of successive approximations (in Russian), Revue Roum. Math. Pures Appl.17 (1972), 1433-1437.
  23. [23] D. R. Sahu, A. Chakraborty, R. P. Dubey, K-iterated function system, Fractals18 (2010), 139-144.10.1142/S0218348X10004713
  24. [24] N. A. Secelean, Iterated function systems consisting of F -contractions, Fixed Point Theory Appl. (2013), 2013:277.10.1186/1687-1812-2013-277
  25. [25] M. Taskovic, Osnove teorije fiksne tacke (Fundamental Elements of Fixed Point Theory), Matematicka biblioteka 50, Beograd, 1986.
  26. [26] N. Van Dung, N. Petruşel, A. Petruşel, On iterated function systems consisting of Kannan maps, Reich maps, Chatterjea type maps, and related results, J. Fixed Point Theory Appl.19 (2017), 2271-2285.10.1007/s11784-017-0419-z
DOI: https://doi.org/10.2478/awutm-2018-0016 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 71 - 80
Published on: Apr 30, 2020
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Radu Miculescu, Alexandru Mihail, Irina Savu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.