Have a personal or library account? Click to login
Weak and strong convergence theorems for the Krasnoselskij iterative algorithm in the class of enriched strictly pseudocontractive operators Cover

Weak and strong convergence theorems for the Krasnoselskij iterative algorithm in the class of enriched strictly pseudocontractive operators

By: Vasile Berinde  
Open Access
|Apr 2020

References

  1. [1] V. Berinde, Approximating fixed points of Lipschitzian generalized pseudo-contractions, in: Mathematics & Mathematics education (Bethlehem, 2000), World Sci. Publ., River Edge, NJ, 2002, 73-81.10.1142/9789812778390_0006
  2. [2] V. Berinde, Iterative approximation of fixed points for pseudo-contractive operators, Semin. Fixed Point Theory Cluj-Napoca3 (2002), 209-215.
  3. [3] V. Berinde, Iterative approximation of fixed points, Second edition. Lecture Notes in Mathematics. 1912, Springer, 2007.10.1109/SYNASC.2007.49
  4. [4] V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math.35 (2019), 293-304.10.37193/CJM.2019.03.04
  5. [5] V. Berinde, Iterative approximation of fixed points of enriched quasi-nonexpansive mappings and applications, (submitted).
  6. [6] V. Berinde, Approximating fixed points of enriched demicontractive mappings by Krasnoselskij-Mann iteration in Hilbert spaces, (submitted).
  7. [7] V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij-Mann iteration in Banach spaces, (submitted).
  8. [8] V. Berinde, M. Păcurar, Fixed point theorems of Kannan type mappings with applications to split feasibility and variational inequality problems, (submitted).
  9. [9] V. Berinde, M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, (submitted).
  10. [10] V. Berinde, M. Păcurar, Approximating fixed points of enriched Chatterjea type mappings, (submitted).
  11. [11] V. Berinde, M. Petric, Fixed point theorems for cyclic non-self single-valued almost contractions, Carpathian J. Math.31 (2015), 289-296.10.37193/CJM.2015.03.04
  12. [12] V. Berinde, A. R. Khan, M. Păcurar, Coupled solutions for a bivariate weakly nonexpansive operator by iterations, Fixed Point Theory Appl. (2014), 12 pp.10.1186/1687-1812-2014-149
  13. [13] M. Bethke, Approximation of fixed points of strictly pseudocontractive operators (German), Wiss. Z. Pädagog. Hochsch. ”Liselotte Herrmann” Güstrow Math.-Natur. Fak.27 (1989), 263-270.
  14. [14] F. E. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc.72 (1966), 571-575.10.1090/S0002-9904-1966-11544-6
  15. [15] F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl.20 (1967), 197-228.10.1016/0022-247X(67)90085-6
  16. [16] C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Lecture Notes in Mathematics, 1965, Springer, 2009.10.1007/978-1-84882-190-3
  17. [17] L. Deng, On Chidume’s open questions, J. Math. Anal. Appl.174 (1993), 441-449.10.1006/jmaa.1993.1129
  18. [18] H. Fukhar-ud-din, V. Berinde, Fixed point iterations for Prešić-Kannan nonexpansive mappings in product convex metric spaces, Acta Univ. Sapientiae Math.10 (2018), 56-69.10.2478/ausm-2018-0005
  19. [19] H. Fukhar-ud-din, V. Berinde, A. R. Khan, Fixed point approximation of Prešić nonexpansive mappings in product of CAT (0) spaces, Carpathian J. Math.32 (2016), 315-322.10.1186/s13663-015-0483-2
  20. [20] D. Göhde, Nichtexpansive und pseudokontraktive Abbildungen sternförmiger Mengen im Hilbertraum, Beiträge Anal.9 (1976), 23-25.
  21. [21] G. G. Johnson, Fixed points by mean value iterations, Proc. Amer. Math. Soc.34 (1972), 193-194.10.1090/S0002-9939-1972-0291918-4
  22. [22] A. Khan, A. H. Siddiqi, Nonexpansive type mappings in 2-pre-Hilbert spaces, Math. Sem. Notes Kobe Univ.11 (1983), 331-334.
  23. [23] M. A. Krasnosel’skiǐ, Two remarks about the method of successive approximations (Russian), Uspehi Mat. Nauk (N.S.)10 (1955), 123-127.
  24. [24] G. López, V. Martín-Márquez, H.-K. Xu, Halpern’s iteration for nonexpansive mappings, Nonlinear analysis and optimization I. Nonlinear analysis513 (2010), 211-231.10.1090/conm/513/10085
  25. [25] G. Marino, H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl.329 (2007), 336-346.10.1016/j.jmaa.2006.06.055
  26. [26] J. J. Moloney, Some fixed point theorems, Glas. Mat. Ser. III24 (44) (1989), 59-76.
  27. [27] R. N. Mukherjee, T. Som, Construction of fixed points of strictly pseudocontractive mappings in a generalized Hilbert space and related applications, Indian J. Pure Appl. Math.15 (1984), 1183-1189.
  28. [28] M. O. Osilike, A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder-Petryshyn type, J. Math. Anal. Appl.256 (2001), 431-445.10.1006/jmaa.2000.7257
  29. [29] J. A. Park, Mann-iteration process for the fixed point of strictly pseudocontractive mapping in some Banach spaces, J. Korean Math. Soc.31 (1994), 333-337.
  30. [30] W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl.14 (1966), 276-284.10.1016/0022-247X(66)90027-8
  31. [31] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl.67 (1979), 274-276.10.1016/0022-247X(79)90024-6
  32. [32] B. E. Rhoades, Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc.196 (1974), 161-176.10.1090/S0002-9947-1974-0348565-1
  33. [33] J. Schu, Iterative construction of fixed points of strictly pseudocontractive mappings, Appl. Anal.40 (1991), 67-72.10.1080/00036819108839994
  34. [34] J. Schu, On a theorem of C. E. Chidume concerning the iterative approximation of fixed points, Math. Nachr.153 (1991), 313-319.10.1002/mana.19911530127
  35. [35] X. L. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc.113 (1991), 727-731.10.1090/S0002-9939-1991-1086345-8
  36. [36] Z. Zhou, Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal.69 (2008), 456-462.10.1016/j.na.2007.05.032
DOI: https://doi.org/10.2478/awutm-2018-0013 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 13 - 27
Published on: Apr 30, 2020
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Vasile Berinde, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.