Have a personal or library account? Click to login

References

  1. [1] D. E. Blair, Lecture notes in Mathematics, Springer-Verlag Berlin, 509,1976
  2. [2] D. E. Blair, Riemannian Geometry of contact and symplectic manifolds, Birkhäuser, Boston, 200210.1007/978-1-4757-3604-5
  3. [3] A. M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30, (2016), no. 2, 489-49610.2298/FIL1602489B
  4. [4] A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20, (2015), 1-13
  5. [5] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc., 33(3), (2010), 361-368
  6. [6] T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta., 69, (1996), 344-347
  7. [7] T. Chave and G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B., 478, (1996), 758-77810.1016/0550-3213(96)00341-0
  8. [8] J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61, no. 2, (2009), 205-21210.2748/tmj/1245849443
  9. [9] U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifold, Indian J. pure appl. Math., 35, (2004), 159-165
  10. [10] F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition R.R=Q(S,R), Geometry and topology of submanifolds, World Sci., Singapore, 3, (1990), 108-130
  11. [11] F. Defever and R. Deszcz, Some results on geodesic mappings of Riemannian manifolds satisfying the condition R.R=Q(S,R), Periodica Mathematica Hungarica, 29, (1994), 267-27610.1007/BF01875853
  12. [12] R. Deszcz, On conformally flat Riemannian manifolds satisfying certain curvature conditions, Tensor (N.S.), 49, (1990), 134-145
  13. [13] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie, 55(103), 1, (2012), 41-50
  14. [14] S. Deshmukh, H. Alodan, and H. Al-Sodais, A Note on Ricci Soliton, Balkan J. Geom. Appl., 16, 1, (2011), 48-55
  15. [15] K.L. Duggal, Almost Ricci Solitons and Physical Applications, International Electronic Journal of Geometry, 2, (2017), 1-1010.1155/2016/4903520
  16. [16] D. Friedan, Non linear models in 2+ dimensions, Ann. Phys., 163, (1985), 318-41910.1016/0003-4916(85)90384-7
  17. [17] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7, (1978), 259-28010.1007/BF00151525
  18. [18] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, (Contemp. Math. Santa Cruz, CA, 1986), American Math. Soc., (1988), 237-26310.1090/conm/071/954419
  19. [19] S. Ianus and D. Smaranda, Some remarkable structures on the products of an almost contact metric manifold with the real line, Papers from the National Coll. on Geometry and Topology, Univ. Timisoara, (1997), 107-110
  20. [20] T. Ivey, Ricci solitons on compact 3-manifolds, Diff. Geom. Appl., 3, (1993), 301-30710.1016/0926-2245(93)90008-O
  21. [21] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, (1972), 93-10310.2748/tmj/1178241594
  22. [22] J.A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32, (1985), 187-19310.5486/PMD.1985.32.3-4.07
  23. [23] D. G. Prakasha and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom., 108, (2017), 383-39210.1007/s00022-016-0345-z
  24. [24] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21, (1969), 221-22810.2748/tmj/1178243031
DOI: https://doi.org/10.2478/awutm-2018-0004 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 51 - 63
Submitted on: May 26, 2018
Accepted on: Oct 4, 2018
Published on: Dec 7, 2018
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2018 Krishnendu De, Uday Chand De, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.