[2] V. Lakshmikantham J. Appell N. van Minh and P. Zabreiko, A general model of evolutionary processes. Exponential dichotomy – I, II, Nonlinear Anal., 21, (1993), 207–218, 219–22510.1016/0362-546X(93)90112-6
[3] B. Aulbach and J. Kalbrenner, Exponential forward splitting for noninvertible difference equations, Comp. Math. Appl., 42, (2001), 743-75110.1016/S0898-1221(01)00194-8
[4] B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations, J. Difference Equ. Appl., 7, (2001), 895-91310.1080/10236190108808310
[5] M.-G. Babuţia and M. Megan, Exponential dichotomy concepts for evolution operators on the half-line, Ann. Acad. Rom. Sci. Ser. Math. Appl., 7, (2015), 209–226
[6] S. N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces, J. Differential Equations, 120, (1995), 429–47710.1006/jdeq.1995.1117
[8] J. L. Daleckiĭ and M. G. Kreĭn, Stability of Solutions of Differential Equations in Banach Spaces, Translations of Mathematical Monographs, 43, (1974)
[9] P. Viet Hai, Continuous, discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows, Nonlinear Anal., 72, (2010), 4390–439610.1016/j.na.2010.01.046
[10] P. Viet Hai, Discrete, continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Appl. Anal., 90, (2011), 1897–190710.1080/00036811.2010.534728
[12] M. Megan and I.-L. Popa, Exponential splitting for nonautonomous linear discrete-time systems in Banach spaces, J. Comput. Appl. Math., 312, (2017), 181-19110.1016/j.cam.2016.03.036
[14] M. Megan and C. Stoica, Concepts of dichotomy for skew-evolution semiflows in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2, (2010), 125–140
[15] C. S. Stoica and M. Megan C. L. Mihiţ, On uniform exponential splitting for noninvertible evolution operators in Banach spaces, An. Univ. Vest. Timişoara, Ser. Mat.-Inf. LIII, 2, (2015), 121–13110.1515/awutm-2015-0019
[18] R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113, (1994), 17–6710.1006/jdeq.1994.1113
[19] B. Sasu and A. L. Sasu, Exponential dichotomy, (lp, lq)-admissibility on the half-line, J. Math. Anal. Appl., 316, (2006), 397–40810.1155/AAA/2006/31641
[20] C. Stoica and D. Borlea,On H-dichotomy for skew-evolution semiflows in Banach spaces, Theory, Applications of Mathematics & Computer Science, 2, (2012), 29–36
[21] C. Stoica and D. Borlea, Exponential stability versus polynomial stability for skew-evolution semiflows in infinite dimensional spaces, Theory, Applications of Mathematics Computer & Science, 4, (2014), 221–229
[22] C. Stoica and M. Megan, On uniform exponential stability for skew-evolution semiflows on Banach space, Nonlinear Anal., 72, (2010), 1305–131310.1016/j.na.2009.08.019
[23] X. Q. Song and D. Q. Li T. Yue, On weak exponential expansiveness of skew-evolution semiflows in Banach spaces, J. Inequal. Appl., (2014), 1–610.1186/1029-242X-2014-165