Have a personal or library account? Click to login
On (h; k)-Dichotomy and (h; k)-Trichotomy of Noninvertible Evolution Operators in Banach Spaces Cover

On (h; k)-Dichotomy and (h; k)-Trichotomy of Noninvertible Evolution Operators in Banach Spaces

Open Access
|Mar 2015

References

  1. [1] M. G. Babuţia and M. Megan, Exponential dichotomy concepts for evolution operators on the half-line, to appear in the Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications, 7, (2015)
  2. [2] L. Barreira and C. Vails, Robustness of nonuniform exponential trichotomies in Banach spaces, J. Math. Anal. Appl., 351, (2009), 373-38110.1016/j.jmaa.2008.10.030
  3. [3] L. Barreira, M. Fang, C. Vails, and J. Zhang. Robustness of nonuniform polyno¬mial dichotomies for difference equations, Topol. Method. Nonlinear An., 37, (2011), 357-386
  4. [4] L. Barreira, J. Chu, and C. Vails, Robustness of nonuniform dichotomies with different growth rates, Sao Paolo Journal of Math. Sciences, 2, (2011), 203-23110.11606/issn.2316-9028.v5i2p203-231
  5. [5] A. J. G. Bento and C. Silva, Stable manifolds for nonuniform polynomial di¬chotomy, J. Funct. Analysis, 257, (2009), 122-14810.1016/j.jfa.2009.01.032
  6. [6] A. J. G. Bento, N. Lupa, M. Megan, and C. Silva, Integral conditions for nonuniform p- dichotomy, arXivGvl [math.DS], (12 May 2014)
  7. [7] X. Chang, J. Zhang, and J. Qin, Robustness of nonuniform (/z, ^-dichotomies in Banach spaces, J. Math, Anal. Appl., 387, (2012), 583-594
  8. [8] S. Elaydi and O. Hajek. Exponential trichotomy of differential systems, J. Math, Anal. Appl, 129, (1988), 362-37410.1016/0022-247X(88)90255-7
  9. [9] J. Hong, R. Obaya, and A. Sanz, Existence of a class of ergotic solutions implies exponential trichotomy, Appl. Math. Lett., 12, (1999), 43-4510.1016/S0893-9659(99)00031-2
  10. [10] M. I. Kovacs, M. G. Babuţia, and M. Megan, On (h,k)- dichotomy in Banach spaces, Bull. Ştiinţ. Univ. Politehnica Timişoara, Ser. Mat. Fiz., 59, (2014), 19-27
  11. [11] M. I. Kovacs. On uniform exponential trichotomy in Banach spaces, Analele Univ. de Vest Timişoara, Seria Mat.-Inf, 52, (2014), 81-9310.2478/awutm-2014-0006
  12. [12] M. I. Kovacs and R. Retezan, On (h,k)-trichotomy for evolution operators in Banach spaces, Annals of Tiberiu Popoviciu Seminar of Functional Equations, Ap¬proximation and Convexity, 12, (2014), 3-16
  13. [13] N. Lupa and M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh, Math., 174, (2014), 265-28410.1007/s00605-013-0517-y
  14. [14] M. Megan, On (h, fc)-dichotomy of evolution operators in Banach spaces, Dynamic Systems Appl, 5, (1996), 189-196
  15. [15] M. Megan, A. L. Sasu, and B. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations and Operator Theory, 44, (2002), 71-7810.1007/BF01197861
  16. [16] M. Megan and M. G. Babuţia, Nonuniform exponential dichotomy for noninvert- ible evolution operators in Banach spaces, submitted
  17. [17] M. Megan and C. Stoica, On uniform exponential trichotomy of evolution opera¬tors in Banach spaces, Integral Equations and Operator Theory, 60, (2008), 499-50610.1007/s00020-008-1555-z
  18. [18] M. Megan, T. Ceauşu, and M. L. Ramneanţu, Polynomial stability of evolution operators in Banach spaces, Opuscula Mathematica, 31, (2011), 269-27710.7494/OpMath.2011.31.2.279
  19. [19] M. L. Ramneanţu, T. Ceauşu, and M. Megan, On nonuniform polynomial dichotomy of evolution operators in Banach spaces. International Journal of Pure and Applied Mathematics, 75, (2012), 305-318
  20. [20] C. Stoica and M. Megan, On (h, fc)-triehotomy for skew-evolution semiflows in Banach spaces. Stud. Univ. Babeş-Bolyai Math., 56, (2011), 147-156
  21. [21] J. Zhang, X. Chang, and J. Wang, Existence and robustness of nonuniform (h, k. p, v) dichotomies for nonautonomous impulsive differential equations, J. Math. Anal. Appl, 400, (2013), 710-723 10.1016/j.jmaa.2012.12.007
DOI: https://doi.org/10.2478/awutm-2014-0015 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 127 - 143
Submitted on: Oct 4, 2014
Accepted on: Feb 10, 2015
Published on: Mar 25, 2015
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2015 Monteola Ilona Kovács, Mihail Megan, Claudia Luminiţa Mihiţ, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.