Have a personal or library account? Click to login
Contributions to Persistence Theory Cover

References

  1. [1] H. Adams, JPlex Matlab Tutorial, December 26, 2011
  2. [2] M. de Berg, O. Cheong,M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications (Third Edition), Springer-Verlag, Heidelberg, 200810.1007/978-3-540-77974-2
  3. [3] D. Burghelea and T. K. Dey, Topological Persistence for Circle Valued Maps, Discrete Comput. Geom., 50, (2013), no.1, 69-98
  4. [4] G. Carlsson, Topology and Data, Bull. Amer. Math. Soc., 46, (2009), 255-30810.1090/S0273-0979-09-01249-X
  5. [5] G. Carlsson, A. Collins, L. Guibas, and A. Zomorodian, Persistence barcodes for shapes, Internat. J. Shape Modeling, 11, (2005), 149-18710.1142/S0218654305000761
  6. [6] G. Carlsson and V. D. Silva, Zigzag Persistence, Foundations of Computational Mathematics, 10(4), (2010), 367-40510.1007/s10208-010-9066-0
  7. [7] G. Carlsson, V. D. Silva, and D. Morozov, Zigzag Persistent Homology and Real-valued Functions, Proc. 25th Ann. Sympos. Comput. Geom., (2009), 247-25610.1145/1542362.1542408
  8. [8] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot, Proximity of persistence modules and their diagrams, Proc. 25th Ann. Sympos. Comput.Geom., (2009), 237-24610.1145/1542362.1542407
  9. [9] D. Cohen-Steiner, H. Edelsbrunner, and J. L. Harer, Stability of persistence diagrams, Discrete Comput. Geom., 37, (2007), 103-12010.1007/s00454-006-1276-5
  10. [10] D. Cohen-Steiner, H. Edelsbrunner, J. L. Harer, and Y. Mileyko, Lipshitz functions have Lp-stable persistence, Foundations of Computational Mathematics, 10 (2), (2010), 127-13910.1007/s10208-010-9060-6
  11. [11] D. Cohen-Steiner, H. Edelsbrunner, J. L. Harer, and D. Morozov, Persistent homology for kernels, images, and cokernels., Proc. 20th Ann. ACM-SIAM Sympos. Discrete Alg., (2009), 1011-102010.1137/1.9781611973068.110
  12. [12] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov, Vines and vineyards by updating persistence in linear time, Proc. 22nd Ann. Sympos. Comput. Geom., (2006), 119-12610.1145/1137856.1137877
  13. [13] H. S. M. Coxeter, Introduction to Geometry (Second Edition), Wiley Classics Library, 1989
  14. [14] J. Dattorro, Convex Optimization & Euclidean Distance Geometry, Meboo Publishing, 2008
  15. [15] R. Deheuvels, Topologie d’une fonctionnelle, Ann. of Math., 61, (1955), 13-7210.2307/1969619
  16. [16] T. K. Dey and R. Wenger, Stability of Critical Points with Interval Persistence, Discrete Comput. Geom., 38, (2007), 479-51210.1007/s00454-007-1356-1
  17. [17] B. Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Commentarii Math. Helvetici, 17, (1944-1945), 240-25510.1007/BF02566245
  18. [18] H. Edelsbrunner and J. L. Harer, Persistent homology - a survey, Surveys on Discrete and Computational Geometry Twenty Years Later, J.E. Goodman, J. Patch and R, Pollack (eds.), Contemporar
  19. [19] H. Edelsbrunner and J. L. Harer, Computational Topology: An Introduction, AMS Press, 201010.1090/mbk/069
  20. [20] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom., 28, (2002), 511-53310.1007/s00454-002-2885-2
  21. [21] P. Frosini and C. Landi, Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, 9, (1999), 596-603
  22. [22] P. Gabriel, Unzerlegbare Darstellungen I, Manuscr. Math., 6, (1972), 71-10310.1007/BF01298413
  23. [23] B. Grünbaum, Convex Polytopes (2nd Edition), GTM 221, Springer, 200310.1007/978-1-4613-0019-9
  24. [24] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002
  25. [25] J.-C. Hausmann, On the Vietoris-Rips complexes and a cohomology theory for metric spaces, Prospects in Topology: Proceedings of a conference in honour of William Browder, Annals of Mathematics Studies 138, 175-188, Princeton Univ. Press, 199510.1515/9781400882588-013
  26. [26] R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput., 8, (1979), 499-50710.1137/0208040
  27. [27] S. Lang, Chapter III Modules, Section 7 Modules over principal rings, Algebra( Revised Third Edition), GTM 211, 146-155, Springer, 2002
  28. [28] F. Meunier, Polytopal complexes: maps, chain complexes and... necklaces, arXiv:0806.1488v2, (2008)
  29. [29] J. Milnor, Morse Theory (Annals of Mathematic Studies AM-51), Princeton Univ. Press, 196310.1515/9781400881802
  30. [30] D. Morozov, Persistence algorithm takes cubic time in worst case, BioGeometry News, Dept. Comput. Sci., Duke Univ., Durham, North Carolina, (2005)
  31. [31] J. R. Munkres, Elements of Algebraic Topology, Westview Press, 1993
  32. [32] F. P. Preparata and M. I. Shamos, Computational Geometry: an Introduction, Springer-Verlag, New York, 198510.1007/978-1-4612-1098-6
  33. [33] V. Robins, Toward computing homology from finite approximations, Topology Proceedings, 24, (1999), 503-532
  34. [34] H. Sexton and M. V. Johansson, JPlex, a Java software package for computing the persistent homology of filtered simplicial complexes
  35. [35] E. H. Spanier, Algebraic Topology, Springer-Verlag, New York, 196610.1007/978-1-4684-9322-1_5
  36. [36] L. Vietoris, Über den h¨oheren Zusammenhang kompakter R¨aume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann., 97, (1927), 454-47210.1007/BF01447877
  37. [37] A. J. Zomorodian, Topology for Computing, Cambridge Univ. Press, Cambridge, England, 200510.1017/CBO9780511546945
  38. [38] A. J. Zomorodian and G. Carlsson, Computing Persistent Homology, Discrete Comput. Geom., 33, (2005), 249-274 10.1007/s00454-004-1146-y
DOI: https://doi.org/10.2478/awutm-2014-0012 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 13 - 95
Submitted on: Mar 28, 2014
Accepted on: Sep 15, 2014
Published on: Mar 25, 2015
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2015 Dong Du, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.