Have a personal or library account? Click to login
On the Solutions of a Class of Nonlinear Integral Equations in the Banach Algebra of the Continuous Functions and Some Examples Cover

On the Solutions of a Class of Nonlinear Integral Equations in the Banach Algebra of the Continuous Functions and Some Examples

Open Access
|Dec 2014

References

  1. [1] R. P. Agarval, D. O’Regan, andWong P. J. Y., Positive solutions of differential, difference and integral equations, Kluwer Academic, Dordrecht, 1999.10.1007/978-94-015-9171-3_22
  2. [2] I. K. Argyros, Quadratic equations and applications to Chandrasekhar’s and related equations, Bull. Austral. Math. Soc., 32, (1985), 275-292.10.1017/S0004972700009953
  3. [3] J. Banas and K. Goebel, Measures of noncompactness in Banach space, Lecture Notes in Pure and Applied Mathematics, New York: Dekker, 60, 1980.
  4. [4] J. Banas, Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc., 46, (1989), 61-6810.1017/S1446788700030378
  5. [5] J. Banas, Applications of measure of weak compactness and some classes of operators in the theory of functional equations in the Lebesque space, Nonlinear Anal., 30, (1997), 3283-3293.10.1016/S0362-546X(96)00157-5
  6. [6] J. Banas, M. Lecko, and W. G. El-Sayed, Existence theorems for some quadratic integral equations, J. Math. Anal. Appl., 222, (1998), 276-285.10.1006/jmaa.1998.5941
  7. [7] J. Banas and M. Lecko, Fixed points of the product of operators in Banach algebra, Panamer. Math. J., 12, (2002), 101-109.
  8. [8] J. Banas and L. Olszowy, On a class of mesures of noncompactness in Banach algebras and their application to nonlinear integral equations, J. for Analy. and its Appl., 28, (2009), 1-24.10.4171/ZAA/1394
  9. [9] J. Caballero, A. B. Mingarelli, and K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Differential Equations, 57, (2006), 1-11.
  10. [10] S. Chandrasekhar, Radiative Transfer, Oxford University Press, London, 1950.
  11. [11] K. Deimling, Nonlinear Functional Analysis, Springer- Verlag, Berlin, 1985.10.1007/978-3-662-00547-7
  12. [12] S. Hu, M. Khavanin, and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Analysis, 34, (1989), 261-266.10.1080/00036818908839899
  13. [13] A. Karoui, On the existence of continuous solutions of nonlinear integral equations, Appl. Math. Lett., 18, (2005), 299-305.10.1016/j.aml.2004.09.007
  14. [14] P. P. Zabrejko, A. I. Koshelev, M. A. Krasnosel’skii, S. G. Mikhlin, Rakovshchik L. S., and Stecenko V. J., Integral equations, Noordhoff, Leyden, 1975. 10.1007/978-94-010-1909-5_10
DOI: https://doi.org/10.2478/awutm-2014-0008 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 121 - 140
Submitted on: Jan 30, 2014
Accepted on: May 12, 2014
Published on: Dec 11, 2014
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 Ismet Özdemir, Bekir Ilhan, Ümit Çakan, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.