Have a personal or library account? Click to login
On Uniform Polynomial Stability of Variational Nonautonomous Difference Equations in Banach Spaces Cover

On Uniform Polynomial Stability of Variational Nonautonomous Difference Equations in Banach Spaces

Open Access
|Jan 2014

References

  1. [1] E. A. Barbashin, Introduction in Stability Theory, Izd. Nauka, Moskva, 1967.
  2. [2] L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Analysis, 7, (2009), 5208-5219.10.1016/j.na.2009.04.005
  3. [3] R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach spaces, SIAM J.Math. Anal., 3, (1973), 428-455.10.1137/0503042
  4. [4] A. Lyapunov, The General Problem of the Stability of Motion, Taylor end Francis, 1992.10.1080/00207179208934253
  5. [5] M. Megan, T. Ceauşu, and M. L. Rămneanţu, Polynomial stability of evolution operators in Banach spaces, Opuscula Mathematica, 31/2, (2011), 279-288.10.7494/OpMath.2011.31.2.279
  6. [6] M. Megan, T. Ceauşu, and M. A. Tomescu, On exponential stability of variational nonautonomous difference equations in Banach spaces, Ann. Acad. Rom. Sci, Ser. Math. Appl., 4/1, (2012), 20-31.10.1155/2013/407958
  7. [7] M. Megan and C. Stoica, Discrete asymptotic behaviors for skew-evolution semiows on Banach spaces, Carpathian J. Math., 24, (2008), 348-355.
DOI: https://doi.org/10.2478/awutm-2013-0020 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 125 - 132
Published on: Jan 22, 2014
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 Mihaela Aurelia Tomescu, published by West University of Timisoara
This work is licensed under the Creative Commons License.