Have a personal or library account? Click to login
On the Bounds for the Derivatives of the Solutions of the Linear Volterra Integral Equations Cover

On the Bounds for the Derivatives of the Solutions of the Linear Volterra Integral Equations

Open Access
|Jan 2014

References

  1. [1] R. S. Anderssen, A. R. Davies, and F. R. de Hoog, Fast collocation methods for Volterra integral equations of convolution type, J. Comput. Appl. Math., 196, (2006), 652-663.10.1016/j.cam.2005.10.018
  2. [2] R. S. Anderssen, A. R. Davies, and F. R. de Hoog, The effect of kernel perturbations when solving the interconversion convolution equation of linear viscoelasticity, Appl. Math. Lett., 24, (2011), 71-75. 10.1016/j.aml.2010.08.019
  3. [3] R. Bellman and K. L. Cooke, Differential - Difference Equations, Academic press, New York, 1963.10.1063/1.3050672
  4. [4] F. R de Hoog and R. S. Anderssen, Kernel perturbations for a class of secondkind convolution Volterra equations with non-negative kernels, Appl. Math. Lett., 25, (2012), 1222-1225.10.1016/j.aml.2012.02.058
  5. [5] R. Ling, Integral equations of Volterra type, J. Math. Anal. Appl., 64, (1978), 381-397.10.1016/0022-247X(78)90046-X
  6. [6] R. Ling, Solutions of singular integral equations, Internat. J. Math. & Math. Sci., 5 (1), (1982), 123-131.10.1155/S016117128200012X
  7. [7] I. Özdemir and Ö. F. Temizer, On the linear Volterra integral equations with convolution kernel, Analele Universitatii din Timisoara (Seria Matematica-Informatica), XXXVII (2), (1999), 113-122.
  8. [8] I. Özdemir and Ö. F. Temizer, Expansion of the boundaries of the solutions of the linear Volterra integral equations with convolution kernel, Integr. Equ. Oper. Theory, 43(4), (2002), 466-479.10.1007/BF01212705
  9. [9] I. Özdemir and Ö. F. Temizer, The boundaries of the solutions of the linear Volterra integral equations with convolution kernel, Math. Comp., 75, (2006), 1175-1199.10.1090/S0025-5718-06-01834-5
  10. [10] I. Özdemir and Ö. F. Temizer, On the solutions of the linear integral equations of Volterra type, Math. Methods Appl. Sci., 30(18), (2007), 2329-2369.10.1002/mma.888
  11. [11] I. Özdemir and Ö. F. Temizer, On some properties of the solution of the linear integral equation of Volterra type, An. Univ. Vest Timis., Ser. Mat.-Inform., LI (1), (2013), 117-15110.2478/awutm-2013-0009
  12. [12] Ö. F. Temizer and I. Özdemir, On the bounded derivatives of the solutions of the linear Volterra integral equations, Int. J. Comput. Math., 86 (9), (2009), 1512-1541.10.1080/00207160701882121
  13. [13] F. G. Tricomi, Integral Equations, Dover Publications, Inc., New York, 1985.
DOI: https://doi.org/10.2478/awutm-2013-0018 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 89 - 113
Published on: Jan 22, 2014
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 Ismet Özdemir, Ö. Faruk Temizer, published by West University of Timisoara
This work is licensed under the Creative Commons License.