Have a personal or library account? Click to login
On Controllability of Fuzzy Dynamical Matrix Lyapunov Systems Cover

References

  1. [1] Alexander Graham, Kronecker products and matrix calculus with applications, Ellis Horwood Ltd., England, 1981
  2. [2] R.J.Aumann, Integrals of set-valued functions, Journal of Mathematical Analysis and Applications, 12, (1965), 1-1210.1016/0022-247X(65)90049-1
  3. [3] J.B.Conway, A course in functional analysis, Springer-Verlag, New York, 1990
  4. [4] G.Debreu, Integration of correspondence, in: Proc. Fifth Berkeley Symp. Math. Statist. Probab. Part 1(Univ. California Press, Berkeley, CA), 2, (1967), 351-372
  5. [5] Z.Ding and A.Kandel, On the controllability of fuzzy dynamical systems (I), The Journal of Fuzzy Mathematics, 18/1, (2000), 203-214
  6. [6] B. Dubey and R.K. George, Controllability of semi-linear matrix Lyapunov systems, Electronic Journal of Di erential Equations, 2013, No.42, (2013), 1-12
  7. [7] O.Kaleva, Fuzzy di erential equations, Fuzzy sets and Systems, 24, (1987), 301-31710.1016/0165-0114(87)90029-7
  8. [8] V.Lakshmikantham and R.Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis, London, 200310.1201/9780203011386
  9. [9] M.S.N.Murty and B.V.Appa Rao, Two point boundary value problems for matrix Lyapunov systems, Journal of the Indian Mathematical society, 73/1, (2006), 1-7
  10. [10] M.S.N.Murty B.V.Appa Rao and G.Suresh Kumar, Controllability, Observability, and Realizability of matrix Lyapunov systems, Bulletin of the Korean Mathematical Society, 43/1, (2006), 149-15910.4134/BKMS.2006.43.1.149
  11. [11] M.S.N.Murty and G.Suresh Kumar, On Controllability and Observability of Fuzzy Dynamical Matrix Lyapunov Systems, Advances in Fuzzy Systems, 2008, (2008), 1-1610.1155/2008/421525
  12. [12] M.S.N.Murty and G.Suresh Kumar, On Observability of Fuzzy Dynamical Matrix Lyapunov Systems, Kyungpook Mathematical Journal, 48, (2008), 473-48610.5666/KMJ.2008.48.3.473
  13. [13] C.V.Negoita and D.A.Ralescu, Applications of fuzzy sets to systems analysis, Willey, New York, 197510.1007/978-3-0348-5921-9
  14. [14] M.Radstrom, An embedding theorem for space of convex sets, Proceedings of American Mathematical Society, 3, (1952), 165-169 10.1090/S0002-9939-1952-0045938-2
DOI: https://doi.org/10.2478/awutm-2013-0017 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 73 - 87
Published on: Jan 22, 2014
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 M.S.N. Murty, G. Suresh Kumar, B.V. Appa Rao, K.A.S.N.V. Prasad, published by West University of Timisoara
This work is licensed under the Creative Commons License.