Have a personal or library account? Click to login
On the Ψ - Exponential Asymptotic Stability of Nonlinear Lyapunov Matrix Differential Equations Cover

On the Ψ - Exponential Asymptotic Stability of Nonlinear Lyapunov Matrix Differential Equations

Open Access
|Jan 2014

References

  1. [1] G. Ascoli, Osservazioni sopre alcune questioni di stabilita, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 8 (9), (1950), 129-134
  2. [2] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, Inc. New York (translated in Romanian), 1960
  3. [3] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Company, Boston, 1965
  4. [4] A. Diamandescu, On Ψ-stability of a nonlinear Lyapunov matrix differential equations, Electronic Journal of Qualitative Theory Differential Equations, 54, (2009), 1-1810.14232/ejqtde.2009.1.54
  5. [5] A. Diamandescu, On Ψ-asymptotic stability of nonlinear Lyapunov matrix differential equations, Analele Universităţii de Vest, Timişoara, Seria Matematică - Infomatică, L (1), (2012), 03-2510.2478/v10324-012-0001-8
  6. [6] A. Diamandescu, On the Ψ-strong stability of nonlinear Lyapunov matrix differential equations, to appear
  7. [7] A. Diamandescu, On the Ψ-uniform asymptotic stability of a nonlinear Volterra integro-differential system, Analele Universităţii din Timişoara, Seria Matematică - Informatică, XXXIX (2), (2001), 35-62
  8. [8] A. Diamandescu, On the Ψ-instability of nonlinear Lyapunov matrix differential equations, Analele Universităţii de Vest, Timişoara, Seria Matematică - Informatică, XLIX (1), (2011), 21-37
  9. [9] A. Diamandescu, Note on the existence of a Ψ bounded solution for a Lyapunov matrix differential equation, Demonstrate Mathematica, XLV (3), (2012), 549-56010.1515/dema-2013-0400
  10. [10] J.L. Massera, Contributions to stability theory, Ann. of Math., 64, (1956), 182-20610.2307/1969955
  11. [11] M.S.N. Murty and G. Suresh Kumar, On dichotomy and conditioning for twopoint boundary value problems associated with first order matrix Lyapunov systems, J. Konan Math. Soc. 45, 5, (2008), 1361-137810.4134/JKMS.2008.45.5.1361
  12. [12] T. Yoshizawa, Stability Theory by Lyapunov’s Second Method, The Mathematical Society of Japan, 1966
DOI: https://doi.org/10.2478/awutm-2013-0012 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 7 - 28
Published on: Jan 22, 2014
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2014 Aurel Diamandescu, published by West University of Timisoara
This work is licensed under the Creative Commons License.