Have a personal or library account? Click to login
On Sandwich Theorems for Analytic Functions Defined by a Certain Generalized Linear Operator Cover

On Sandwich Theorems for Analytic Functions Defined by a Certain Generalized Linear Operator

Open Access
|Aug 2013

References

  1. [1] R.M. Ali, V. Ravichandran, and K.G Subramanian, Di_erential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15, (2004), 87-94.
  2. [2] F.M. Al-Oboudi, On univalent functions de_ned by a generalized S_al_agean operator, Internat. J. Math. Math. Sci., 27, (2004), 1429-1436.10.1155/S0161171204108090
  3. [3] M.K. Aouf and A. O. A. O. Mostafa, Sandwich theorems for analytic functions de_ned by convolution, Acta Univ. Apulensis, 21, (2010), 7-20.
  4. [4] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135, (1969), 429-446.10.1090/S0002-9947-1969-0232920-2
  5. [5] T. Bulboacă, Classes of _rst order di_erential superordinations, Demonstratio Math., 35, (2002), 287-292.10.1515/dema-2002-0209
  6. [6] T. Bulboacă, Differential Subordinations and Superordinations, Recent Results, House of Scienti_c Book Publ., Cluj-Napoca, 2005.
  7. [7] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric func- tions, SIAM J. Math. Anal., 15, (1984), 737-745.10.1137/0515057
  8. [8] A. Cătaş, G. I. Oros, and G Oros, Di_erential subordinations associated with multiplier transformations, Abstract Appl. Anal., 2008,ID 845724, (2008), 1-11.10.1155/2008/845724
  9. [9] N. E. Cho and T. G. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40, (2003), 399-410.10.4134/BKMS.2003.40.3.399
  10. [10] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103, (1999), 1-13.10.1016/S0096-3003(98)10042-5
  11. [11] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14, (2003), 7-18.10.1080/10652460304543
  12. [12] R. M. El-Ashwah and M. K. Aouf, Di_erential subordination and superordi- nation for certain subclasses of pvalent functions, Math. Comput. Modelling, 51, (2010), 349-360.10.1016/j.mcm.2009.12.027
  13. [13] Yu. E. Hohlov, Operators and operations in the univalent functions, Izv. Vys^sh. Ucebn. Zaved. Mat., 10, (1978), 83-89.
  14. [14] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16, (1965), 755-758.10.1090/S0002-9939-1965-0178131-2
  15. [15] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17, (1966), 352-357.10.1090/S0002-9939-1966-0188423-X
  16. [16] S. S. Miller and P. T. Mocanu, Di_erential Subordination: Theory and Applica- tions, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
  17. [17] S. S. Miller and P. T. Mocanu, Subordinates of dierential superordinations, Complex Variables, 48, (2003), 815-826.10.1080/02781070310001599322
  18. [18] V. O. Nechita, Di_erential subordinations and superordinations for analytic func- tions de_ned by the generalized S_al_agean derivative, Acta Univ. Apulensis, 16, (2008), 143-156.
  19. [19] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39, (1987), 1057-1977.10.4153/CJM-1987-054-3
  20. [20] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49, (1975), 109-115.10.1090/S0002-9939-1975-0367176-1
  21. [21] H. Saitoh, A linear operator and its applications of _est order di_erential subordi- nations, Math. Japon., 44, (1996), 31-38.
  22. [22] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer- Verlag), 1013, (1983), 362-372.10.1007/BFb0066543
  23. [23] C. Selvaraj and K. R. Karthikeyan, Di_erential subordination and superordina- tion for certain subclasses of analytic functions, Far East J. Math. Sci., 29, (2008), 419-430.
  24. [24] T. N. Shanmugam, V. Ravichandran, and S. Sivasubramanian, Di_erential sandwich theorems for some subclasses of analytic functions, J. Australian Math. Anal. Appl., 3, Art. 8, (2006), 1-11.
  25. [25] N. N. Tuneski, On certain su_cient conditions for starlikeness, Internat. J. Math. Math. Sci., 23, (2000), 521-527. 10.1155/S0161171200003574
DOI: https://doi.org/10.2478/awutm-2013-0010 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 153 - 166
Published on: Aug 14, 2013
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Tamer Mohamed Seoudy, published by West University of Timisoara
This work is licensed under the Creative Commons License.