Have a personal or library account? Click to login
On Some Properties of the Solution of the Linear Integral Equation of Volterra Type Cover

On Some Properties of the Solution of the Linear Integral Equation of Volterra Type

Open Access
|Aug 2013

References

  1. [1] R. S. Anderssen, A. R. Davies, and F. R. de Hoog, Fast collocation methods for Volterra integral equations of convolution type, J. Comput. Appl. Math., 196, (2006), 652-663.10.1016/j.cam.2005.10.018
  2. [2] R. S. Anderssen, A. R. Davies, and F. R. de Hoog, The effect of kernel perturbations when solving the interconversion convolution equation of linear viscoelasticity, Appl. Math. Lett., 24, (2011), 71-75.10.1016/j.aml.2010.08.019
  3. [3] R. Bellman and K. L. Cooke, Differential - Difference Equations, Academic press, New York, 1963.10.1063/1.3050672
  4. [4] A. Friedman, On integral equations of Volterra type, J. Analyse Math., 11, (1963), 381-413.10.1007/BF02789991
  5. [5] F. R de Hoog and R. S. Anderssen, Kernel perturbations for a class of secondkind convolution Volterra equations with non-negative kernels, Appl. Math. Lett., 25, (2012), 1222-1225.10.1016/j.aml.2012.02.058
  6. [6] R. Ling, Integral equations of Volterra type, J. Math. Anal. Appl., 64, (1978), 381-397.10.1016/0022-247X(78)90046-X
  7. [7] R. Ling, Solutions of singular integral equations, Internat. J. Math. & Math. Sci., 5 (1), (1982), 123-131.10.1155/S016117128200012X
  8. [8] I. Özdemir and Ö. F. Temizer, On the linear Volterra integral equations with convolution kernel, XXXVII (2), (1999), 113-122.
  9. [9] I. Özdemir and Ö. F. Temizer, Expansion of the boundaries of the solutions of the linear Volterra integral equations with convolution kernel, Integr. Equ. Oper. Theory, 43(4), (2002), 466-479.10.1007/BF01212705
  10. [10] I. Özdemir and Ö. F. Temizer, The boundaries of the solutions of the linear Volterra integral equations with convolution kernel, Math. Comp., 75, (2006), 1175-1199.10.1090/S0025-5718-06-01834-5
  11. [11] I. Özdemir and Ö. F. Temizer, On the solutions of the linear integral equations of Volterra type, Math. Methods Appl. Sci., 30(18), (2007), 2329-2369.10.1002/mma.888
  12. [12] Ö. F. Temizer and I. Özdemir, On the bounded derivatives of the solutions of the linear Volterra integral equations, Int. J. Comput. Math., 86(9), (2009), 1512-1541.10.1080/00207160701882121
  13. [13] F. G. Tricomi, Integral Equations, Dover Publications, Inc., New York, 1985.
DOI: https://doi.org/10.2478/awutm-2013-0009 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 117 - 151
Published on: Aug 14, 2013
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Ismet Özdemir, Ö. Faruk Temizer, published by West University of Timisoara
This work is licensed under the Creative Commons License.