Have a personal or library account? Click to login
A Vanishing Cohomology Theorem of Nakano Type on Projectivized Finsler Bundle Cover

A Vanishing Cohomology Theorem of Nakano Type on Projectivized Finsler Bundle

By: Cristian Ida  
Open Access
|Aug 2013

References

  1. [1] M. Abate and G. Patrizio, Finsler metrics-A global approach. Lectures Notes in Math., Springer-Verlag, Pisa, 199410.1007/BFb0073980
  2. [2] T. Aikou, A partial connection on complex Finsler bundles and its applications, Ilinois J. of Math., 42(3), (1998), 481-492.10.1215/ijm/1256044938
  3. [3] T. Aikou, Some remarks on projectively at complex Finsler metrics, Periodica Math. Hungarica, 48(1-2), (2004), 125-140.10.1023/B:MAHU.0000038970.83762.a7
  4. [4] T. Aikou, Finsler Geometry on Complex Vector Bundles, MSRI Publ., 50, (2004), 83-105.
  5. [5] T. Aikou, The Chern-Finsler connection and Finsler-Káhler manifolds, Adv. Stud. in Pure Math., 48, (2007), 343-373.
  6. [6] S. Bochner, Curvature in Hermitian metric, Bull. Amer. Math. Soc. Sci., 53, (1946), 179-195.10.1090/S0002-9904-1947-08778-4
  7. [7] S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. Sci., 52, (1946), 776-797.10.1090/S0002-9904-1946-08647-4
  8. [8] S. Bochner, Tensor fields and Ricci curvature in Hermitian metric, Proc. Nat. Acad., 37, (1951), 704-706.10.1073/pnas.37.10.704106344916578405
  9. [9] J. K. Cao and P.-M. Wong, Finsler Geometry of Projectivized Vector Bundles, J. Math. Kyoto Univ., 43, (2003), 369-410.10.1215/kjm/1250283732
  10. [10] K. Chandler and P.-M. Wong, On the holomorphic sectional and bisectional curvatures in complex Finsler geometry, Periodica Math. Hungarica, 48(1-2), (2004), 93-123.10.1023/B:MAHU.0000038969.91179.e4
  11. [11] S. S. Chern, Complex manifolds, Chicago, 1956.
  12. [12] J Girbau, Vanishing cohomology theorems and stability of complex analytic foliations, Israel J. of Math., 40(3-4), (1981), 235-254.10.1007/BF02761365
  13. [13] J. Girbau, Pseudo-differential operators on V-manifolds and foliations: Part I, Col- lect. Math., 30, (1979), 247-265.
  14. [14] P. A. Griffiths, Hermitian di erential geometry, Chern classes and positive vector bundles, Princeton University Press, (1969), 185-252.10.1515/9781400871230-011
  15. [15] P. Griffiths and J. Harris, Principles of Algebraic Geometry, A Willey-Int. Publ., New York-Chichester-Brisbane-Toronto, 1978.
  16. [16] C. Ida, Vertical Laplacian on complex Finsler bundles, Acta Math. Acad. Paed. Nyiregyhaziensis, 26(2), (2010), 313-327.
  17. [17] C. Ida, A vanishing theorem for vertical tensor fields on complex Finsler bundles, An. St. Univ. "Al.I. Cuza", Iasi, 57, supplement, (2011), 103-112.10.2478/v10157-011-0006-3
  18. [18] C. Ida, A Nakano type inequality for mixed forms on complex Finsler manifolds, Mathematical Communications, 16(2), (2011), 471-479.
  19. [19] S. Kobayashi, Di erential Geometry of Complex Vector Bundles, Publ. of the Math. Soc. of Japan, Tokyo, 1987. 10.1515/9781400858682
DOI: https://doi.org/10.2478/awutm-2013-0005 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 63 - 73
Published on: Aug 14, 2013
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Cristian Ida, published by West University of Timisoara
This work is licensed under the Creative Commons License.