Have a personal or library account? Click to login
Open Access
|Aug 2021

References

  1. [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, (1976).10.1007/978-1-4757-5579-4
  2. [2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, third edition, (2009).
  3. [3] E. Croot, On a combinatorial method for counting smooth numbers in sets of integers, J. Number Theory, 126 (2007), 237–253.10.1016/j.jnt.2007.01.004
  4. [4] K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys., 22 (1930), 1–14.
  5. [5] D. H. Greene, D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhäuser, third edition, (1990).10.1007/978-0-8176-4729-2
  6. [6] A. Hildebrand, G. Tenenbaum, Integers without large prime factors, J. Théor. Nr. Bordx 5(2) (1993), 411–484.10.5802/jtnb.101
  7. [7] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, AMS, third edition (2015).10.1090/gsm/163
Language: English
Page range: 273 - 280
Submitted on: Jun 28, 2020
Published on: Aug 26, 2021
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Gábor Román, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.