Have a personal or library account? Click to login

Certain classes of bi-univalent functions associated with the Horadam polynomials

Open Access
|Aug 2021

References

  1. [1] C. Abirami, N. Magesh and J. Yamini, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal. 2020, Art. ID 7391058, 8 pp.10.1155/2020/7391058
  2. [2] C. Abirami, N. Magesh, J. Yamini, and N. B. Gatti, Horadam polynomial coefficient estimates for the classes of λ −bi-pseudo-starlike and bi-Bazilevič functions, J. Anal., (2020), 1–10.10.1155/2020/7391058
  3. [3] A. G. Alamoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials, Malaya J. Mat., 7 (2019), no. 4, 618–624.
  4. [4] A. G. Alamoush, On a subclass of bi-univalent functions associated to Horadam polynomials, Int. J. Open Problems Complex Anal., 12 (2020), no. 1, 58 – 65.
  5. [5] I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-Univalent functions defined by Frasin differential operator, Mathematics, 8 (2020), 783, 1–11.10.3390/math8050783
  6. [6] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), no. 3, 344–351.
  7. [7] Ş. Altınkaya and S. Yalçın, On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class ˙, Bol. Soc. Mat. Mex., (3) 25 (2019), no. 3, 567–575.
  8. [8] Ş. Altınkaya and S. Yalçın, (p, q)-Lucas polynomials and their applications to bi-univalent functions, Proyecciones, 38 (2019), no. 5, 1093–1105.
  9. [9] O. Al-Refai and M. Ali, General coefficient estimates for bi-univalent functions: a new approach, Turk. J. Math., 44 (2020), 240–251.10.3906/mat-1910-100
  10. [10] M. K. Aouf, A. O. Mostafa, R. E. El. Morsy, Coefficient bounds for general class of bi-univalent functions of complex order associated with q−Sălăgean operator and Chebyshev polynomials, Electr. J. Math. Anal. Appl., 8 (2020), no. 2, 251–260.
  11. [11] I. T. Awolere and A. T. Oladipo, Coefficients of bi-univalent functions involving pseudo-starlikeness associated with Chebyshev polynomials, Khayyam J. Math., 5 (2019), no. 1, 140–149.
  12. [12] M. Çağlar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turk J. Math., 41, (2017), 694–706.10.3906/mat-1602-25
  13. [13] S. M. El-Deeb, T. Bulboaca and B. M. El-Matary, Maclaurin coefficient estimates of bi-Univalent functions connected with the q−derivative, Mathematics, 8 (2020), 418, 1–14.10.3390/math8030418
  14. [14] A. F. Horadam, J. M. Mahon, Pell and Pell–Lucas polynomials, Fibonacci Quart., 23, (1985), 7–20.
  15. [15] T. Hörçum, E. Gökçen Koçer, On some properties of Horadam polynomials, Int Math Forum, 4 (2009), 1243–1252.
  16. [16] A. Y. Lashin, Coefficient estimates for two subclasses of analytic and bi-univalent functions, Ukrainian Math. J., 70 (2019), no. 9, 1484–1492
  17. [17] P. Long, H. Tang, W. Wang, Fekete-Szegö functional problems for certain subclasses of bi-univalent functions involving the Hohlov operator, J. Math. Res. Appl., 40 (2020), no. 1, 1–12.
  18. [18] M. Naeem, S. Khan, and F. M. Sakar, Faber polynomial coefficients estimates of bi-univalent functions, Inter. J. Maps Math., 3 (2020), no. 1, 57–67.
  19. [19] N. Magesh and S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afr. Mat., 29 (2018), no. 1-2, 203–209.
  20. [20] N. Magesh and J. Yamini, Fekete-Szegő problem and second Hankel determinant for a class of bi-univalent functions, Tbilisi Math. J., 11 (2018), no. 1, 141–157.
  21. [21] H. Orhan, N. Magesh and C. Abirami, Fekete-Szegö problem for bi-Bazilevič functions related to shell-like curves, AIMS Mathematics, 5 (2020), no. 5, 4412–4423.
  22. [22] S. Porwal and S. Kumar, New subclasses of bi-univalent functions defined by multiplier transformation, Stud. Univ. Babeş -Bolyai Math., 65 (2020), no. 1, 47–55.
  23. [23] F. M. Sakar and S. M. Aydogan, Initial bounds for certain subclasses of generalized Sălăgean type bi-univalent functions associated with the Horadam polynomials, J. Quality. Measur. Anal., 15 (2019), no. 1, 89–100.
  24. [24] G. Singh, G. Singh and G. Singh, A subclass of bi-univalent functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, Int. J. Math. Math. Sci., 2019, Art. ID 7628083, 1–7.10.1155/2019/7628083
  25. [25] H. M. Srivastava, Altınkaya and S. Yalçın, Certain subclasses of biunivalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), no. 4, 1873–1879.
  26. [26] H. M. Srivastava, F. M. Sakar and H. Özlem Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32 (2018), no. 4, 1313–1322.
  27. [27] H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc., 44 (2018), no. 1, 149–157.
  28. [28] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), no. 10, 1188–1192.
  29. [29] H. M. Srivastava, A. Motamednezhad and E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 172, 1–12.10.3390/math8020172
  30. [30] A. K. Wanas and A. L. Alina, Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions, IOP Conf. Series: J. Phy., 1294 (2019), 032003, 1–6.
Language: English
Page range: 258 - 272
Submitted on: Jun 30, 2020
Published on: Aug 26, 2021
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Halit Orhan, Paduvalapattana Kempegowda Mamatha, Sondekola Rudra Swamy, Nanjundan Magesh, Jagadeesan Yamini, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.